Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изображение фронтов

На рис. 96, а изображен фронт трещины в ее плоскости, а на рис. 96,5и 96,в - фронт трещины в сечении, перпендикулярном ее плоскости б — весьма тонкая пластина, отвечающая плоскому напряженному состоянию и косому срезу под 45 , в более толстая пластина, в средней части которой реализуется плоская деформация и прямолинейный фронт).  [c.212]

Как это отражается на распространении звука Это видно из рис. 33. На нем изображен фронт звуковой волны, бегущей при положительном градиенте скорости ветра и отрицательном температурном градиенте. В верхней части волновой фронт распространяется в-более холодном воздухе или против более сильного ветра и поэтому двигается с меньшей скоростью, чем в нижней части. В результате фронт волны изгибается кверху. Аналогично, если в лодке грести одним веслом сильнее, чем другим, то лодка поворачивает в сторону от него. На рис. 33 показан результирующий эффект. Если звуковая волна распространяется от источника против ветра или бежит в любом направлении в атмосфере при отрицательном температурном градиенте, ее путь искривляется кверху и земля оказывает экранирующее действие, сопровождаемое возникновением звуковой тени. Экранирование при этом не полное, так как вследствие дифракции звука волна проникает и в область тени — с этим явлением мы скоро познакомимся. Во всяком случае, за пределами критического расстояния между источником звука и точкой, где волна, проходящая ниже всех остальных, касается поверхности земли, ин-  [c.132]


На фиг. 131 изображен фронт установки для приготовления газового карбюризатора из керосина. Процесс пиролиза проводится в трех нижних трубах 1, а процесс крекинга полученного газа с водяным паром — в трех верхних трубах 2.  [c.117]

На рис. 6 приведена схема регистрации по методу наклонной щели. и — векторы скорости движения изображения фронта ударной волны на пленке и скорости движения пленки соответственно в лабораторной системе координат. Если О А — изображение щели на пленке, а Е —точка пересечения изображения фронта ударной волны со щелью, то при одновременном движении мимо щели ударной волны и пленки след движения точки будет регистрироваться в виде прямой, составляющей угол р с  [c.109]

При отличной от нуля скорости движения изображения фронта ударного разрыва относительно пленки ]) = Vs --Уп и конечной ширине щели /г возникает размытие изображения разрыва на пленке.  [c.109]

Совершенно аналогично вместо простейшего плоского поля можно рассмотреть голограмму сферической волны. В случае плоского опорного фронта получающаяся голограмма имеет вид синусоидальной зонной пластинки Френеля, которая (см. 6.1) при облучении плоской волной дает изображение точки — источника сферической волны. Разбивая произвольный объект на совокупность независимых точечных источников, для каждого  [c.357]

Волновые представления в той первоначальной форме, в которой их развивал Гюйгенс ( Трактат о свете , 1690), не могли дать удовлетворительного ответа на поставленный. вопрос. В основу учения о распространении света Гюйгенсом положен принцип, носящий его имя. Согласно представлениям Гюйгенса, свет, по аналогии со звуком, представляет собой волны, распространяющиеся в особой среде — эфире, занимающем все пространство, в частности заполняющем собой промежутки между частицами любого вещества, которые как бы погружены в океан эфира. С этой точки зрения естественно было считать, что колебательное движение частиц эфира передается не только той частице, которая лежит на пути светового луча, т. е. на прямой, соединяющей источник света L (рис. 8.1) с рассматриваемой точкой Л, но всем частицам, примыкающим к А, т. е. световая волна распространяется из А во все стороны, как если бы точка А служила источником света. Поверхность, огибающая эти вторичные волны, и представляет собой поверхность волнового фронта. Для случая, изображенного на рис. 8.1, эта огибающая (жирная дуга) представится частью шаровой поверхности с центром в L, ограниченной конусом, веду-  [c.150]


Пример гауссова пучка служит прекрасной иллюстрацией к диффузионной интерпретации дифракционных явлений, изложенной в 38. Согласно этой интерпретации, дифракцию можно рассматривать как результат диффузии амплитуды поля вдоль волнового фронта по мере его распространения в среде. Картина дифракционного расширения гауссова пучка, изображенная на рис. 9.8, действительно копирует пространственное распределение плотности диффундирующих частиц, если последовательным положениям  [c.189]

Установленная формальная аналогия, разумеется, не случайна. Как при голографировании, так и при отображении в линзовой либо зеркальной оптической системе речь идет о преобразовании одной сферической волны (предмета) в другую, также сферическую волну (изображения). Формальный вид закона такого преобразования (линейное преобразование кривизны волновых фронтов) предопределен самой постановкой задачи и никак не связан с конкретным способом его реализации. Любой способ, голографический или линзовый, может только изменить кривизну исходного волнового фронта в определенное число раз и добавить к ней новое слагаемое ), но не более того. Анализ физического явления, призванного осуществить эту процедуру, конкретизирует физический смысл соответствующего множителя и слагаемого и их зависимость от характеристик явления и конструктивных особенностей системы. Последнее оказывается очень существенным при сравнительном рассмотрении разных способов. Как уже упоминалось, применение разных длин волн на первом и втором этапе предоставляет голографии неизмеримо более широкие возможности, чем аналогичный фактор в линзовых и зеркальных системах (различие показателей преломления в пространстве изображений и предметов, иммерсионные объективы микроскопов, см. 97), ибо можно использовать излучение с очень сильно различающимися длинами волн, например, рентгеновское и видимое (когда будет создан рентгеновский лазер).  [c.253]

Полученные в 61 соотношения, позволяющие вычислить положение изображений, не следует понимать в том смысле, что каждой точке объекта будет соответствовать точка (в математическом смысле этого слова) в изображении. Как и в любой другой оптической системе, ограничение размеров волнового фронта приводит к тому, что изображение точечного источника имеет вид дифракционного пятна большего или меньшего размера, пропорционального длине волны (см. гл. IX, XV). Упомянутые соотношения описывают только положения центров дифракционных пятен. Что касается их формы, размеров, распределения в них энергии и т. д., то все эти важные свойства изображения определяются формой голограммы и ее раз.мерами, если, разумеется, при наблюдении изображения полностью используется весь свет от голограммы. Если же система, регистрирующая изображение (фотоаппарат или глаз), пропускает часть восстановленной волны, то свойства дифракционного пятна определяются регистрирующей системой.  [c.256]

В реальных оптических схемах для получения изображения трехмерного объекта (рис. 4) на первом. этапе (рис. 4, а) предмет 7 устанавливают вблизи фотопластинки 8 и освещают пучком света от лазера I. Часть волнового фронта, который отражается от предмета во всех направ-, лениях, падает на фотопластинку. Одновременно на нее под некоторым углом к объектной волне проецируют опор-  [c.17]

При восстановлении изображения используется та же схема, что и при получении голограммы, с той лишь разницей, что предмет и освещающий его пучок убирают. Голограмму 4 устанавливают так, чтобы опорный пучок, формируемый от лазера / с помощью линзовой системы 2 и зеркала 3, падал на нее примерно под тем же углом, что и на стадии регистрации. Часть пучка проходит через голограмму, не реагируя на ее присутствие, но часть его отклоняется, формируя по обе стороны пластинки два новых волновых фронта, один из которых представляет собой точную копию первичного волнового фронта, отраженного от предмета. Чтобы увидеть восстановленный волновой фронт, мы должны смотреть на голограмму под соответствующим углом. Когда. этот волновой фронт попадает нам в глаза, создается впечатление, что мы видим реальный предмет, расположенный за пластинкой точно в том же положении, в каком он находился во время регистрации голограммы.  [c.19]


Голограмма имеет громадную информационную емкость. В пределе для бинарной информации (т. е. для информации, принимающей только два значения, например О или 1) и при использовании гелий-неонового лазера с /- = 0,6328 мкм она составляет Л =1,8- 10 бит/см (бит— единица бинарной информации), т. е. на одной фотопластинке можно получить множество голограмм различных предметов путем некогерентного последовательного наложения волновых фронтов и затем раздельного восстановления изображений. Одна из возможностей такой записи заключена в использовании при каждой экспозиции опорных пучков, падающих под различными углами.  [c.26]

Если при получении голограммы фотопластинка. экспонировалась в свете нескольких спектральных линий (например синей, зеленой и красной), то каждая длина волны образует в фотоэмульсии свою дифракционную структуру. При восстановлении изображения соответствующие длины волн будут выделяться из сплошного спектра, что приведет к восстановлению не только фронта, но и спектрального состава световой волны, т. е. к получению цветного изображения.  [c.27]

При условии равенства длин волн излучения, падающего на голограмму при восстановлении волнового фронта и используемого при записи голографического поля, а также при отсутствии масштабных преобразований голограммы (например оптического уменьшения или уве.ти-чения) формулу для расчета положений изображений можно представить в следующем виде  [c.59]

Голографический контроль состоит из двух этапов. Первый этап — получение голограммы эталонной поверхности. Второй. этап — сравнение оптически восстановленного с голограммы изображения. эталонной поверхности (эталонная световая волна) с волновым фронтом от контролируемой поверхности.  [c.100]

Ниже будет показано, что в адиабатических (без подвода тепла) скачках сжатия происходит увеличение энтропии газа,, а в адиабатических скачках разрежения, если бы они существовали, энтропия должна была бы уменьшаться. Этим доказывается законность существования адиабатических скачков давления и одновременно невозможность возникновения адиабатических скачков разрежения (как известно из термодинамики, в конечной замкнутой системе энтропия убывать не может). В полном соответствии с этим находится тот известный факт, что наблюдаемые иногда в действительности скачки разрежения (скачок конденсации, фронт пламени) получаются только при подводе тепла в область скачка, т. е. в таких условиях, когда и при скачке разрежения энтропия газа растет. Нужно заметить, что возникновение скачков разрежения при подводе тепла к газу отнюдь не противоречит процессу, изображенному на рис. 3.1, В самом деле, если в области пониженных давлений В за счет подвода тепла получается температура выше, чем в области 8  [c.115]

Трудности, возникающие в эксперименте при фотографировании процесса распространения волн напряжений, обусловлены малой продолжительностью явления, сочетающейся при изучении движения поверхности с малостью перемещений, а при изучении движения фронта волны—с высокими значениями скорости распространения. Возникает потребность в синхронизации источника освещения с исследуемым явлением, при этом главная задача состоит в получении хорошего снимка. Для этого используют особенности изучаемого явления, так, например, удар снаряда о преграду можно использовать для начального включения искры, разрыв проволочек на пути движения снаряда в преграде обеспечивает последующие включения искры. Для получения одиночного изображения движущегося объекта применяется метод, в котором объект перекрывает пучок света между фотоэлементом и конденсатором. Синхронизация движения объекта с одиночной вспышкой достигается изменением расстояния между предметом и его положением, при котором он прерывает луч. Если фотографируемое явление сопровождается звуком, то можно использовать микрофонный адаптер. Синхронизация между явлениями, порождающими звук, и источником света достигается изменением положения предмета относительно микрофона ряд последовательных фотографий повторяющихся операций получают изменением положения микрофона от экспозиции к экспозиции. В зависимости от конкретной задачи возможны различные комбинации микрофонного адаптера и связанной с ним аппаратуры.  [c.30]

Характер возмущений (см. рис. 4.1, а) соответствует дозвуковой скорости движения газа (V <С а), так как фронт малых возмущений, двигаясь со скоростью звука, распространяется навстречу потоку. В случае, показанном на рис. 4.1, б, скорость потока равна скорости звука V = а) и возмущения перемещаются только по потоку. На рис. 4.1, O изображен вид распространения звуковых возмущений в сверхзвуковом потоке V > а), поэтому все слабые возмущения находятся в пространстве (конус Маха), ограниченном образующими — прямыми AB и АС.  [c.107]

На рис. 2.10.3, б изображена картина распределения напряжения по длине стержня при г < т, фронт успел продвинуться на длину t, за фронтом всюду напряжение постоянно и равно о. При t> X картина меняется, на конце сила уже не действует, значит и напряжение на конце равно нулю. Свободная от напряжений область распространяется по стержню с той же скоростью с, граница ее образует задний фронт волны. График распределения напряжений по длине изображен па рис. 2.10.3, в, он движется вправо со скоростью с, сохраняя неизменную форму. Этот график повторяет график изменения во времени силы,  [c.72]

Недостаток уравнения (13.7.2) состоит в том, что оно соответствует бесконечно большой скорости распространения импульсов, волнистая кривая, изображенная на рис. 13.8.1, уходит вперед бесконечно далеко. В действительности передний фронт образован волной расширения, которая движется вдоль оси стержня с наибольшей скоростью, но очень быстро ослабевает с расстоянием. Далее, по-видимому, возникает сложная комбинация продольных и поперечных волн, отражающихся от боковой поверхности, и наиболее возмущенная область продвигается со скоростью со.  [c.452]


С помощью голографии можно восстанавливать изображение трехмерных объектов. Так, например, на рис. 32, а показана схема такого голографирования. Опорная и освещающая объект волны получаются в результате разделения волнового фронта лазерного излучения 2 на две части. Одна часть фронта отражается от зеркала  [c.75]

На рис. VI 1.4.1 приведено схематическое изображение фронта плоских волн по отношению к ребрам прямоугольного помещения с разной ориентацией волновых векторов ктпр и  [c.361]

Применим это правило для построения изображения фронта звуковой волны (рис. 121). Пусть источник света О освещает звуковую волну, распространяющуюся по направлению Si]. Выберем некоторый фронт волны н построим его изображение. Применяя оинсанное построение, г.олучнм, что точки Р, Q, R,  [c.213]

Рис. 121. Схема построения изображения фронта звуковой волны при брегговской дифракции света Рис. 121. <a href="/info/721264">Схема построения</a> изображения фронта <a href="/info/10788">звуковой волны</a> при брегговской дифракции света
Выполнение условия Брэгга—Вульфа для плоскостей Липпмана приводит к избирательности голограммы по отношению к длине волны света, с помощью которого осуществляется восстановление изображения объекта. В действительности при условии постоянства межплоскостного расстояния d, как видно из условия Липпмана— Брэгга—Вульфа, восстановление волнового фронта произойдет только в том случае, если оно осуществляется при той же длине волны, при которой производилась голографическая запись на фотопластинку. Этот факт позволил Ю. Н. Денисюку в качестве источника, восстанавливающего изображение света, пользоваться источником сплошного спектра (светом от солнца и даже от карманного фонарика). В данном случае голограмма из спектра с разными длинами волн выбирает нужную ей одну длину, в которой именно производилась запись, — голограмма действует подобно интерфе-pei/ционному фильтру.  [c.219]

Рассмотрение голограммы как некоторого подобия дифракционной решетки поаволяет уяснить особенности оригинального метода восстановления волнового фронта, предложенного Ю. Н, Денисюком. В этом методе используют толстослойные (несколько десятков микрометров) фотографические пластинки. При встречных пучках (опорной и предметной волн) в толще эмульсии возникает стоячая волна. В результате фотохимических процессов в фотоэмульсии под действием монохроматического света и последующей ее обработки получается своеобразная трехмерная дифракционная решетка. Следовательно, можно восстанавливать изображение, используя источник сплошного спектра, так как трехмерная решетка пропустит излучение только той длины волны монохроматического света, под воздействием которого она образовалась (см. 6.8). Если исходное излучение (опорное и предметное) содержало несколько длин волн, то в толш,е эмульсии возникнет несколько пространственных решеток. При освеш,ении такой голограммы источником сплошного спектра можно получить объемное цветное изображение.  [c.359]

В предыдущих параграфах мы предполагали, что опорная и просвечивающая волны идентичны. В этом случае мнимое изображение полностью копирует сам объект. Однако выполнение указанного условия отнюдь не обязательно, и голографирование успешно осуществляется и в том случае, когда на первом и втором этапах применяется излучение с разными длинами волн и разными кривизнами волновых фронтов. Такие изменения условий опыта позволяют получать увеличенные изображения голографируемых предметов.  [c.248]

Если на пути распространения световой волны оказывается какой-то предмет, волновой фронт искажается. Вследствие внесенного предметом рассеяния света волны, идущие от разных точек освещаемого предмета, будут иметь различные амплитуды и фазы. В. этих амплитудных и фазовых искажениях волнового фронта и заключена информация о форме предмета, в том числе и его объемное изображение.-Используя эти предпосьпки, Д. Габор предложил вместо изображения предмета регистрировать пространственную структуру самой волны света, а именно несущий информацию о предмете волновой фронт, и затем по этой записи восстанавливать изображение предмета.  [c.9]

Получение голограммы объекта и вскстановление записанного на ней изображения. Теперь мы уже можем описать, как получаются го.юг раммы какого-либо предмета, или волнового фронта света, отраженного от предмета (или группы предметов). Как уже было сказано, чтобы получить голограмму, необходимо два когерентных световых пучка.  [c.17]

Когда объект находится достаточно далеко от фотопластинки либо в фокусе линзы (рис. 13, 6), каждая точка объекта посылает на фотопластинку параллельный световой пучок, при этом связь между амплитудно-фазовыми распределениями объектной волны в плоскости голограммы и в плоскости объекта дается преобразованием Фурье или Фурье-образом, осуществляющим разложение оптического изображения объекта в двумерный спектр по пространственным частотам (более подробно о преобразовании Фурье мы поговорим в главе Голографические оптические. элементы ). Голограмма в. этом случае называется голограммой Фраунгофера. Если амплитудно-фазовые распределения объектной и опорной волн являются Фурье-образами и объекта, и опорного источника, то голограмму называют голограммой Фурье. При получении голограммы Фурье объект и опорный источник обычно располагают в фокусе линзы (рис. 13, в). В случае безлинзовой голограммы Фурье опорный источник располагают в плоскости объекта (рис. 13 г). При. этом фронт опорной во7шы и фронты. элементарных волн, рассеянных отдельными точками объекта, имеют одинаковую кривизну. В результате структура и свойства голограммы практически такие же, как у голограммы Фурье. Голограммы Френеля образуются в том случае, когда каждая точка объекта посылает на фотопластинку сферическую волну (рис. 13, <)).  [c.47]

Голографические мультипликаторы с пространственным разделением волнового фронта содержат растр голографических элементов, каждый из которых строит изображение предмета (с полем, равным единичному изображению— одному модулю). В них разделение волнов01ю фронта, распространяющегося от объекта, осуществляется входными зрачками этих элементов, причем в каждый зрачок попадает только часть волнового фронта. Каждый элемент такого растра представляет собой осевую голографическую линзу, концентрические кольца которой образуются в результате интерференции сферического и плоского волновых фронтов.  [c.61]

Объектным лучом в процессе тадуирс1вки служит световое пятно, создаваемое ла зером на диффу зно-отра-жающей поверхности объекта. Смена изображения кода в опорном луче сопровождается. эталонным нагружением или перемещением объекта на один шаг квантования зоны измерения, при. этом каждому изображению кода при получении голограммы соответствует своя картина щероховатости в пределах светового пятна. При восстановлении волновых фронтов (в процессе измерения) в качестве восстанавливающе10 источника используют те же картины шероховатости на поверхности контролируемого объекта, что и в процессе градуировки.  [c.94]


Рассмотрим метод получения голографической топо-граммы объекта, носящий название метода двух источников. При ЭТОМ методе производится регистрация двухэкспозиционной голографической интерферограммы объекта по обычной схеме Лейта. За время между экспозициями освещающий пучок с плоским волновым фронтом поворачивают зеркалом на угол а, что фактически эквивалентно изменению положения источника освещения (рис. 42, а). Голографическая интерферограмма будет восстанавливать два изображения объекта, которые интерферируют между собой и вследствие наличия разности фаз на изображении возникнут интерференционные полосы, характер которых определяется формой поверхности объекта, а также углами между биссектрисой угла а и направлением наблюдения интерферограммы Я. Возникновение интерференционных полос можно объяснить еще и тем, что при повороте освещающего пучка в области их перекрытия возникает система интерференционных плоскостей А, которые пересекают изображение предмета параллельно биссектрисе угла а.  [c.104]

Мы указали способ определения угла, на который отклоняется поток в скачке, когда положенпе фронта известно. Если, наоборот, задано онределенное отклоненпе сверхзвукового потока, то в тех случаях, когда в результате отклонения величина скорости должна уменьшиться (например, при сверхзвуковом обтекании клггаа, изображенного па рис. 3.7, а), возникает косой скачок уплотнения при этом по формулам (30) н (50) может быть вычислен угол а, иод которым расположится фронт скачка по отношению к потоку.  [c.134]

Голограмма регистрирует как амплитудную, так и фазовую информацию, содержащуюся в волновом фронте, j поэтому при ее помощи можно рас-1 сматривать объект с различных точек [зрения, фотографировать изображение I отдельных деталей объекта, располо- окенных яа различной глубине от наблюдателя. Голограммы позволяют выполнять прямые измерения размеров  [c.78]

Момент5 когда фронт ударной волны достиг резервуара, изображен на  [c.79]


Смотреть страницы где упоминается термин Изображение фронтов : [c.211]    [c.198]    [c.152]    [c.216]    [c.361]    [c.367]    [c.17]    [c.84]    [c.84]    [c.85]    [c.452]    [c.115]    [c.79]    [c.83]   
Основы оптики Изд.2 (1973) -- [ c.411 , c.416 ]



ПОИСК



Метод Габора получения изображения восстановлением волновых фронтов

Фронт



© 2025 Mash-xxl.info Реклама на сайте