Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон освещенности

Полученное выражение показывает, что освещенность, создаваемая точечным источником ), обратно пропорциональна квадрату расстояния от источника до поверхности и прямо пропорциональна косинусу угла, составляемого направлением светового потока (осью узкого конуса, внутри которого распространяется поток) с нормалью к освещаемой поверхности. Это есть основной закон освещенности, создаваемой точечным источником (закон обратных квадратов).  [c.46]


Освещенность поверхности зависит от силы света источника, расстояния от него до освещаемой поверхности и угла падения лучей на эту поверхность. Эта зависимость выражена в двух законах освещенности.  [c.96]

Метод, основанный на измерении спектральных коэффициентов отражения покрытия при освещении его вспомогательным источником излучения. Расчет е(Х, Т) производится на основании закона Кирхгофа для непрозрачных тел  [c.163]

Открытие закона сохранения механической энергии (выражаясь точнее, вывод равенства 246) обычно приписывают Гельмгольцу. Но он провел разработку лишь математической стороны вопроса, однако физическая сущность равенств (246) и (247) не могла получить правильного освещения в трудах Гельмгольца, понимавшего движение не как внутренне присущий материи атрибут, а как нечто внешнее по отношению к материи, существо которой , по выражению Гельмгольца, в самом себе представляется для нас покоящимся и бездейственным .  [c.400]

Законы фотоэффекта. Количественные закономерности фотоэлектрического эффекта были установлены выдающимся русским физиком Александром Григорьевичем Столетовым (1839—1896) в 1888— 1889 гг. Используя вакуумный стеклянный баллон с двумя электродами (рис. 298), он исследовал зависимость силы тока в баллоне от напряжения между электродами и условий освещения электрода.  [c.300]

Если D то р —> О. В этом случае будем считать щель (или другое отверстие) широкой. Если D = Vp/., т.е. р О, то щель узка (препятствие мало). Очевидно, что при р —> О трудно выявить дифракцию и можно говорить о соблюдении законов геометрической оптики. При D V( , когда р Q, учет волновых свойств должен играть основную роль. Так, например, если открыта только одна зона Френеля, то освещенность в центре дифракционной картины в четыре раза больше освещенности, создаваемой полностью открытым фронтом.  [c.269]

Очевидно, что этот дополнительный интерференционный эффект будет наблюдаться лишь при правильном их распределении, т.е. когда расстояния между отверстиями равны друг другу или изменяются по определенному закону. Только в таком случае (при когерентном освещении всей структуры) разность фаз между дифрагировавшими волнами сохраняется неизменной и интерференционный член отличен от нуля. Если расстояние между отверстиями изменяется по случайному закону (они расположены хаотично), то никакой постоянной разности фаз не будет, интерференционный член обратится в нуль и надо сложить интенсивности всех пучков света, которые посылает в данном направлении каждое отверстие. Следовательно, при хаотическом расположении отверстий распределение интенсивности останется таким же, как и в случае одного отверстия (см. рис. 6.74).  [c.290]


Опытным доказательством этого закона могут служить наблюдения над резкими тенями, даваемыми точечными источниками света, или получение изображений при помощи малых отверстий. Соотношение между контуром предмета и его тенью при освещении точечным источником (т. е. источником, размеры которого очень малы по сравнению с расстоянием до предмета) соответствует геометрическому проектированию при помощи прямых линий (рис. 1.1). Аналогично рис. 1.2 иллюстрирует получение изображения при помощи малого отверстия, причем форма и размер изображения показывают, что проектирование происходит при помощи прямолинейных лучей.  [c.13]

Более детальное исследование описываемых явлений показывает, что закон прямолинейного распространения света теряет силу, если мы переходим к очень малым отверстиям. Так, в опыте, изображенном на рис. 1.2, мы получим хорошее изображение при размере отверстия около 0,5 мм изображение будет очень несовершенным при отверстии 0,02—0,03 мм. Изображения совсем не получится и экран будет освещен практически равномерно при размерах отверстия около 0,5—1 мкм. Отступления от закона прямолинейного распространения света рассматриваются в учении о дифракции.  [c.14]

Для протяженных источников мы можем разбить поверхность источников на элементарные участки (достаточно малые по сравнению с Д) и, определив освещенность, создаваемую каждым из них по закону обратных квадратов, проинтегрировать затем по всей площади источника, приняв, конечно, во внимание зависимость силы света от направления. Зависимость освещенности от R окажется при этом более сложной. Однако при достаточно больших (по отношению к величине источника) расстояниях можно пользоваться и законом обратных квадратов, т. е. считать источник точечным. Этот упрощенный расчет дает практически хорошие результаты, если линейные размеры источника не превышают /ю расстояния от источника до освещаемой поверхности. Так, если источником служит равномерно освещенный диск диаметром 50 см, то в точке, лежащей на нормали к центру диска, ошибка в расчете по упрощенной формуле для расстояния 50 см достигает приблизительно 25%, для расстояния 2 м не превышает 1,5%, а для расстояния 5 м составляет всего лишь 0,25%.  [c.46]

Из сказанного выше должно быть ясным, что большое количество понятий, связанных с переносимой светом энергией, обусловлено, в конечном итоге, законом прямолинейного распространения света, в силу которого световая энергия может переноситься по-разному в различных направлениях и через элементы поверхности, находящиеся в разных точках. Наиболее дифференцированной характеристикой светового поля служит яркость (или интенсивность), определяющая мощность, распространяющуюся в заданном направлении вблизи заданной точки пространства. Сила света описывает мощность, также распространяющуюся в заданном направлении, но от всей поверхности протяженного источника. Освещенность и свети-г.юсть характеризуют мощность, которая распространяется вблизи какой-либо определенной точки пространства во всех направлениях. Наконец, наиболее интегральной характеристикой является поток, — мощность, переносимая во всех направлениях через всю заданную поверхность. Приведенные соображения наглядно иллюстрируются соотношениями между введенными величинами и яркостью  [c.50]

Закон независимости световых пучков, упомянутый в 1, означает, что световые пучки, встречаясь, не воздействуют друг на друга. Зто положение было ясно сформулировано Гюйгенсом, который писал в своем Трактате Одно из чудеснейших свойств света состоит в том, что, когда он приходит из разных н даже противоположных сторон, лучи его производят свое действие, проходя один сквозь другой без всякой помехи. Этим вызывается то, что несколько зрителей могут одновременно видеть через одно и то же отверстие различные предметы Сам Гюйгенс прибавляет, что этот вывод нетрудно понять с точки зрения волновых представлений. Он является следствием принципа суперпозиции (см. 4), в силу которого световой вектор одной световой волны просто складывается с вектором другой волны, не испытывая никакого искажения. При этом, однако, возникает следующий вопрос. В силу принципа суперпозиции при сложении векторов отдельных волн может получиться волна, амплитуда которой равна, например, сумме амплитуд складывающихся волн. А так как интенсивность волны пропорциональна квадрату амплитуды, то интенсивность результирующей волны не будет, вообще говоря, равна сумме интенсивностей складывающихся волн, ибо квадрат суммы нескольких величин не равен сумме их квадратов. Обычный же опыт показывает, что освещенность, создаваемая двумя или несколькими световыми пучками, представляется простой суммой освещенностей, создаваемых отдельными пучками. Таким образом, обычные экспериментальные факты кажутся на первый взгляд противоречащими волновым представлениям.  [c.62]


Итак, результат сложения двух гармонических колебаний одинаковой частоты зависит от соотношения между их фазами. При сложении большого числа N колебаний одинаковой частоты с произвольными фазами результат будет, конечно, зависеть от закона распределения фаз. Предполагая для простоты, что все колебания имеют одинаковые амплитуды, равные а, найдем, что результирующая интенсивность может заключаться между и нулем. Как показал Рэлей ), при распределении фаз, которые подвергаются вполне случайным изменениям, средняя энергия суммы таких колебаний за время, охватывающее достаточно большое число изменений фаз, равна т. е. в данном общем случае имеет место сложение интенсивностей. Этот вывод имеет самое непосредственное отношение к реальным источникам света. Результирующее колебание от отдельных испускающих центров (атомов), составляющих источник, создает освещенность, величина которой в данный момент и в дайной точке зависит от соотношения фаз между колебаниями отдельных центров. Но наш глаз воспринимает лишь среднюю освещенность за некоторый достаточный для восприятия интервал времени и на некоторой достаточной по величине освещенной площадке. Это обстоятельство приводит к полному усреднению фазовых соотношений, в результате чего воспринимаемая освещенность окажется просто суммой освещенностей, создаваемых каждым светящимся центром нашего источника. Поэтому мы вправе сказать, что две одинаковые свечи дают освещенность вдвое большую, чем одна.  [c.65]

Максимумы и минимумы освещенности, наблюдаемые в интерференционных картинах, не связаны, вообще говоря, с какими-либо превращениями лучистой энергии, т. е. в местах минимумов световая энергия отнюдь не переходит в другие формы, например в тепло. Дело сводится лишь к перераспределению светового потока, так что максимумы освещенности в одних местах компенсируются минимумами в других. Если подсчитать энергию, проходящую через замкнутую поверхность, окружающую источник и зеркало, а затем энергию, протекающую через ту же поверхность в отсутствие зеркала, то энергии в обоих случаях оказываются равными. Таким образом, конечно, никакого противоречия с законом сохранения энергии нет.  [c.88]

Остальные значения ш = 1, 2,. .. отвечают дополнительным волнам, которых не было среди исходных волн (см. рис. 11.3, ). Как известно, отношение интенсивности дифрагировавших волн, отвечающих различным значениям порядка т, определяется законом, по которому изменяется коэффициент пропускания решетки на протяжении ее периода (см. 46, 48). Если пропускание подчиняется синусоидальному закону, то образуются волны т = 0, (решетка Рэлея см. 51). В нашем случае распределение освещенности фотопластинки было синусоидальным, однако пропускание проявленной пластинки не вполне синусоидальное, и дополнительные волны поэтому существуют, хотя, как правило, они сравнительно мало интенсивны. Исключение составляет волна ш= 1, у которой интенсивность такая же как у волны т = —1.  [c.238]

Приведенный выше рис. 8.18 показывает, как выглядела бы тень от руки, держащей тарелку, при освещении параллельным пучком лучей. При относительно малом расстоянии (см. рис. 8.18,а) тень вполне резка и подобна объекту, при большем же расстоянии (/ = 11 км, см. рис. 8.18,6) о геометрическом подобии тени и объекта не может быть и речи. Однако в обычных условиях наблюдения подобные искажения не дают себя знать, и применение законов геометрической оптики приводит к построениям, которые, как показывает опыт, вполне удовлетворительно решают вопрос о распространении света и образовании изображения.  [c.273]

Так как свет есть электромагнитная поперечная волна, то, падая на поверхность проводника (зеркального или поглощающего тела), он должен производить следующие действия электрический вектор, лежащий в плоскости освещенной поверхности, вызывает ток в направлении этого вектора магнитное поле световой волны действует на возникший ток по закону Ампера так, что направление действующей силы совпадает с направлением распространения света. Таким образом, пондеромоторное взаимодействие между светом и отражающим или поглощающим его телом приводит к возникновению давления на тело. Сила давления зависит от интенсив-  [c.660]

То же справедливо и при фотолюминесценции. Внесем в зеркальную полость какое-нибудь фосфоресцирующее вещество, предварительно возбужденное освещением. Свечение нашего тела будет постепенно ослабевать действительно, свет фосфоресценции, отраженный зеркальными стенками, может частично поглощаться нашим веществом и нагревать его однако он не сможет поддерживать длительной фосфоресценции, для возбуждения которой требуется освещение светом более короткой длины волны, чем испускаемый свет (закон Стокса). Значит, и в данном случае будут иметь место постепенное нагревание тела за счет света фосфоресценции и постепенная замена этого излучения тепловым излучением нагретого тела, т. е. излучением, интенсивность и спектральный состав которого определяются температурой тела. Аналогично будет затухать свечение, вызванное кратковременным электрическим разрядом, и заменяться тепловым излучением, соответствующим установившейся температуре системы.  [c.684]

Одним из основных законов оптики является закон прямолинейного распространения света в однородной среде, выполняющийся в тех случаях, когда по тем или иным причинам дифракционные эффекты несущественны. В нелинейной оптике указанный закон, вообще говоря, имеет дополнительные ограничения применимости. Пусть показатель преломления зависит от интенсивности света при достаточно больших ее значениях. Если освещенность в ноне-  [c.820]

Выше предполагалось симметричное распределение освещенности в поперечном сечении пучка и плавное ее уменьшение от оси к периферии, благодаря чему нелинейность среды проявлялась в виде регулярного сужения пучка. Разумеется, при иных законах изменения освещенности возникнут эффекты, которые внешне  [c.824]

Определить освещенность площадки S, лежащей на расстоянии R от бесконечно большой светящейся плоскости и расположенной параллельно этой плоскости, если яркость плоскости по нормальному направлению есть В и она подчиняется закону Ламберта.  [c.861]


Освещенность 45, 345 —, закон обратных квадратов 46 Осциллятор ангармонический 570  [c.924]

Однако следует иметь в виду, что абсолютно черное тело и близкие к нему по свойствам тела отдают энергию с излучением всех возможных частот, причем на долю видимого излучения приходится относительно небольшая часть энергии. Она оказывается наибольшей, когда максимум планковской кривой в шкале длин волн падает на излучение с длиной волны около 5500 А (желто-зеленая часть спектра). Согласно закону смещения Вина та-ко-му положению максимума отвечает температура 5200 К- В этой же области спектра лежит максимум чувствительности человеческого глаза, что не случайно, так как именно такой характер имеет солнечный спектр после прохождения через атмосферу, в которой он частично поглощается и рассеивается. В соответствии с тем, что цветовая температура солнечного излучения у поверхности Земли равна 5200 К, в светотехнике принято называть излучение абсолютно черного тела при этой температуре белым светом. При дальнейшем повышении температуры абсолютно черного тела излучение, приходящееся на полезную для освещения часть спектра, естественно, увеличивается, но доля его в общей излучаемой энергии уменьшается, так что с точки зрения светотехники чрезмерное повышение температуры является невыгодным.  [c.153]

Измерение отношений методом вращающихся секторных дисков подробно описано Куинном и Фордом [71]. Сами диски сделаны с отверстиями вблизи периферии, образованными радиальными парами ножевых кромок. Ось вращения дисков расположена параллельно пучку излучения, который проходит через отверстия и может прерываться. Средняя яркость источника, наблюдаемая через отверстия вращающегося секторного диска, выражается в соответствии с законом Тальбота произведением яркости источника на коэффициент пропускания диска, т. е. на долю времени, в течение которого излучение может проходить через отверстия. Эта доля равна отношению полного угла, занимаемого центрами всех отверстий, к 2я. Тщательно сделанный диск, имеющий, например, коэффициент пропускания 1,25 /о. позволяет получить погрешность измерения коэффициента пропускания до 0,01 %. Коэффициент пропускания может быть измерен либо механически — прямым измерением положения кромок ножей, либо хронометрированием светового пучка, проходящего через отверстие, когда диск вращается in situ. Для того чтобы выполнялся закон Тальбота и была полностью реализована указанная возможная точность в измерении отношения, жалюзийный фотоумножитель (например, EMI 9558) нуждается в низком уровне освещения катода. Средний анодный ток не должен превышать примерно 0,1 мкА, а потенциалы динодов должны быть стабильными.  [c.373]

Изготовим пластинку, состоящую из последовательно чередующихся прозрачных и непрозрачных колец с радиусами р , определяемыми из выражения (6.12) (/ = О, 2, 4, 6,. .. для прозрачных и / = 1, 3, 5, 7. .. для непрозрачных колец). Поместим эту пластинку перпендикулярно линии SB на расстоянии R от источника S и на расстоянии от точки В с центром в точке ТИц-На осрюванин сделанных выше замечаний мы должны получить интенсивность в точке В (при освещении той же длиной волны) значительно больше, чем в отсутствие пластинки. Опыт блестяще подтвердил этот ожидаемый результат. Пластинку изготовили с помощью картины колец Ньютона. Так как последователыгость радиусов колец Ньютона подчиняется тому же закону (6.12), то приготовление такой пластинки стало возможным путем фотографирования колец Ньютона в соответствующем масштабе. Приготовленная таким образом пластинка носит название зонной пластинки Френеля (рис. 6.3 а— открыты четные зоны б— открыты нечетные зоны).  [c.126]

Интенсивность суммарной картины будет изменяться как функция h по закону, который легко установить из соотношения (5. 26). Очевидно, что максимальная интенсивность будет наблюдаться в тех точках экрана, где со82лЛ/(5Л) = 1 [если os2nd/(8h) > 0]. Минимальная интенсивность будет там, где соз271Л/(8Л)= —1 (при том же предположении о знаке второго сомножителя). Для экстремальных значений освещенности имеем  [c.199]

Очевидно, что при наличии двух экранов, образующих просвет (щель), должна наблюдаться картина дифракции, изображенная (в искаженном масштабе) на рис. 6.1 5. В последнем случае предполагалось, что просвет между экранами достаточно велик для того, чтобы действие каждого из них можно было рассматривать совершенно независимо. Наблюдать такую дифракционную картину в оптическом диапазоне чрезвычайно трудно, так как длина волны весьма мала. Вся картина сосредоточена в очень малой области пространства, и переходная область между светом и тенью слишком узка. При не очень внимательном изучении распределения освещенности представляется, что изображение щели описывается законами геометрической оптики. Однако при сближении экранов (сужении щели) дифракционные картины будут накладываться одна на другую и в некоторых условиях можно заметить, что изображение щели расп.пывается. При дальнейшем сужении щели мы с удивлением обнаружим, что ее изображение становится шире, что находится в полном противоречии с законами геометрической оптики (рис. 6.14).  [c.267]

В некоторых приложениях (см. 6.7) ис пользуется освещение щели по синусоидаль ному закону. Пусть распределение амплитуд на щели задается формулой  [c.286]

Для того чтобы завершить рассмотрение стандартных приложений законов черного тела, кратко охарактеризуем эффективность тех или иных источников при использовании их для целей освещения. Хорошо известно, что лампа накаливания с вольфрамовой нитью вошла в практику в конце прошлого столетия и сыграла громадную роль в условиях жизни и труда людей во всем мире. По сей день этот простой и удобный источник света широко используют в быту и на производстве. Многочисленные научные и инженерные исследования позволили увеличит] срок службы лампы накаливания и другие ее эксплуатационные качества, но мало что могли изменить в зф(1зективности этого источника света, т.е, в увеличении доли энергии, которая может быть использована для целей освещения окружающего пространства. Достаточно взглянуть на рис. 8.1, где изображена светимость черного тела для двух температур, а вертикальными линиями ограничена видимая часть спектра (4000 — 7000А), чтобы оценить, сколь малая доля излучения черного те.па может быть эффективно использована в этих целях, даже в том случае (Т = 5000 К), когда /-макс совпадает с зеленой областью спектра, в которой чувствительность глаза наибольшая. Расчеты показывают, что при этих оптимальных условиях лишь около 13% всей излучаемой энергии может быть использовано для освещения. Значительно меньшая часть энергии черного тела может быть утилизирована в том случае, когда его температура составляет примерно 3000 К и максимум излучения находится в инфракрасной области спектра (вблизи 1 мкм). Дальнейшее уменьшение температуры черного тела приведет к еще более низкому коэффициенту использова1шя излучаемой энергии.  [c.415]

Как уже указывалось, одним из первых приложений квантовой теории было истолкование законов фотоэффекта. Это явление было открыто в конце XIX в. Первичные наблюдения Герца сводились к установлению действия мощного ультрафиолетового излучения на искровой разряд между двумя цинковыми электродами. При освещении электродов ультрафиолетовым светом разряды заметно учащги гись, В обстоятельном исследовании А. Г.Столетова изучалось прохождение тока через конденсатор из двух цинковых пластин при освещении одной из них светом ртутной лампы (рис. 8.12). Эффект наблюдался лишь при освещении отрицательно заряженной пластины, и было высказано предположение, что при этом высвобождаются отрицательные заряды. Сила тока (фототока) в цепи оказалась пропорциональ-  [c.431]


Освещенная поверхность, покрытая окисью магния, или колпак из хорошего молочного стекла, освещенный изнутри, — вот примеры источников, достаточно хорошо приближающихся к ламбертовым. Поверхность Солнца излучает по закону, довольно близкому к закону Ламберта, хотя еще Бугер экспериментально установил, что яркость Солнца несколько падает от центра к периферии, составляя на расстоянии /4 радиуса около 80% яркости в центре диска.  [c.48]

Идеальным рассеивателем называется поверхность, полностью рассеивающая весь падающий на нее поток, и притом равномерно по всем направлениям, так что яркость ее не зависит от направления (соблюдается закон Ламберта). Идеальный рассеиватель, освещенность которого доведена до одного люкса, рассеивает с каждого квадратного метра во все стороны весь падающий на него поток, т. е. 1 люмен с каждого квадратного метра. Таким образом, на основании соотношения 5 = пВ (см. 7) он имеет яркость в 1/я = = 0,318 кд/м . Итак, 1 апостильб = 0,318 кд/м — это яркость идеального рассеивателя, на котором создана освещенность в один люкс.  [c.54]

Во многих случаях достаточно знать среднюю сферическую силу света, т. е. значение полного потока, посылаемого источником, а не его распределение по различным направлениям. Такое измерение может быть произведено в так называемых интегральных фотометрах. Одним из таких фотометров служит шаровой фотометр Ульбрехта. Исследуемый источник подвешивается внутри полого шара К (рис. 3.14), внутренняя поверхность которого покрыта белой матовой краской. Белый матовый экран 5 защищает отверстие О на поверхности шара от действия прямых лучей источника. Если отражение света от внутренней поверхности шара К следует закону Ламберта, то освещенность Е отверстия О пропорциональна полному световому потоку Ф лампы  [c.60]

Процесс захода волны во вторую среду можно наблюдать экспериментально. Толщина такого освещенного слоя тем больше, чем больше длина волны, и поэтому изучение его легче удается с длинными электромагнитными волнами. Так, Шеффер и Гросс, применяя электромагнитные волны с = 15 см, наблюдали их полное внутреннее отражение при помощи парафиновой призмы. Они могли убедиться в существовании волнового поля и во второй среде (воздух), помещая воспринимающий прибор (детектор) достаточно близко к поверхности парафина. Квинке осуществил опыт со световыми волнами, основанный на описанном явлении, пользуясь следующим приемом. Так как световое поле во второй среде может достигать заметных размеров на расстояниях, меньших длины световой волны, то, делая прослойку этой второй среды (воздух) тоньше X, мы заставим световое поле проникнуть при значительных еще амплитудах во второй слой стекла, где оно будет распространяться дальше по обычным законам и может быть исследовано, как обычно.  [c.487]

Этот вывод, равно как и закон эквивалентности Эйнштейна, упоминавшийся выше, имеет силу лишь для условий, когда интенсивность света сравнительно мала. Если же освещенность доста-  [c.668]

Многофотонное возбуждение молекул требует очень мощного излучения (10 МВт/см и более) и стало возможным только после создания лазеров. Монохроматичность лазерного света позволяет также до известной степени управлять фотохимическими реакциями. Дело в том, что для протекания многих реакций важно возбудить какую-то определенную степень свободы молекулы или небольщую их группу. При нагревании в силу закона равного распределения энергии возбуждаются все степени свободы. В противоположность этому, освещение монохроматическим светом позволяет воздействовать на ту степень свободы, которая активна в смысле интересующей нас химической реакции. Таким способом удается, например, осуществлять реакции, которые при общем нагревании не возникают из-за наличия других реакций, обладающих меньшей энергией активации. Изменением интенсивности облучения реагирующей смеси можно контролировать скорость протекания химических процессов и т. п.  [c.669]

Вт при а = 0,5 мм, 1 = 10 см. Таким образом, для опытов по самофокусировке требуются сравнительно высокие мощности пучков, которые, однако, вполне доступны при использовании лазеров. Средняя освещенность в рассмотренном числовом примере составляет Р1псР = 10 Вт/см . С помощью закона Стефана—Больцмана легко подсчитать, что для достижения такой же освещенности при использовании излучения абсолютно черного тела необходима температура Т — 2,7 - № К, где Q — телесный угол пучка. Из произведенного сопоставления понятно, почему явление самофокусировки было открыто лишь после создания мощных лазеров (Н. Ф. Пилипецкий, А. Р. Рустамов, 1965 г. теоретическое предсказание Г. А. Аскарьян, 1962 г.).  [c.823]

Спор о природе света мог быть решен только на основе научных исследований оптических явлений. Накопление таких данных вначале шло очень медленно. Около 300 г. до н. э. Евклид установил, чю свет распространяется прямолинейно. Во II в. н. э. экспериментальные исследования преломления света при переходе из одной среды в другую выполняет Птоломей, 1Ю он еще не смог дать формулировку закона преломления. В XIII в. Р. Бэкон впервые описал увеличение размеров предметов при разглядывании их через плосковьшуклую чечевицу. В XV в. появляется первый простейший оптический прибор — камера-обскура, позволивший получить изображение освещенного предмета (рис. 19). Главное, что принесло это изобретение,— это то, что оно решительно отделило свет от зрешя (выражение  [c.112]

Если оговорить в техническом зах ании импульсный отклик анализатора изображения, искомым становится закон анализа изображения и задача синтеза имеет другую формулировку. В начале решения задачи синтеза определяется сигнал, который возникает на выходе анализатора изображения при строчном законе анализа по известному распределению освещенности на входе и заданной по ТЗ сэункции А (х. у)  [c.20]

Такой подсистемой может быть юдвижный и неподвижный растры, оправа приемника лучистой энергии мозаика фоторезисторов и т. п. В вырожденном случае - это неподвижная диафрагма и стоящий непосредственно за ней приемник лучист13й энергии. Методически удобно отнести к подсистеме анализатор изобр 1жения — развертывающее устройство, характеризуемое некоторым коэффициентом пропускания г и законом перемещения в поле анализа изображения, а также устройство, осуществляющее преобразование многомерного сигнала в одномерный без искажений во временной координата. Таким устройством может быть, например, безынерционный фотоприемник. В этом случае можно считать, что на вход анализатора изображения поступает сигнал в виде распределения освещенности, создаваемого либо оптической системой, либо слоем пространства.  [c.60]

Для подобной же цели освещения молекулярного механизма внешнего трения был предложен ряд теоретических схем. Мы ограничимся схемой, предложенной в свое время автором книги, так как она не только объяснила основные закономерности внешнего трения, но привела к обобщению закона Амонтона в виде так называемого двухчленного закона трения, который был опытами В. П. Лазарева, А. С. Ахматова и других ученых точно проверен и применен к предсказанию и объяснению дальнейших закономерностей внешнего трения.  [c.143]

Второй подраздел посвящен вопросам приложения общих законов трения, установленных в первом подразделе, к учету трения в отдельных механизмах и передачах, а также к вопросу теоретического определения их к. п. д. и к рассмотрению механических характеристик передач. В гл. XIII этого раздела рассматриваются потери на трение в различного рода Vпередачах фрикционной, ременной, зубчатой, червячной, а также трение в кулачковых механизмах и в планетарных редукторах, простых и дифференциальных. Здесь освещен также вопрос о потерях на трение и к. п. д. в особой разновидности планетарных редукторов, в так называемых эксцентриковых планетарных редукторах.  [c.10]

При освещении кристалла узким пучком лучей в нем возникают два луча, соответствующие двум электромагнитным волнам, распространяющимся в кристалле с различными скоростями и вследствие чего лучи имеют различные показатели преломления (ло = ivi и Пе = /uj) и распространяются внутри кристалла в различных направлениях. Для одного из лучей показатель преломления о не зависит от направления луча в кристалле и таким образом остается постоянным при любом угле падения световой волны на кристалл этот так называемый обыкновенный луч полностью подчиняется обычным законам преломления. Другой луч — необыкновенный он не следует обычным законам преломления и, кроме частных случаев, не остается в плоскости падения. Скорость распространения этого луча в зависимости от направления распространения в кристалле может принимать различные значения в определенном интервале, соответственно с этим и показатель преломления его зависит от направления. В одноосном кристалле имеется только одно направление оптической оси, в котором оба луча имеют одну и ту же скорость распространения. Во всех других направлениях скорости распространения для обыкновенного и необыкновенного лучей различны.  [c.71]


Смотреть страницы где упоминается термин Закон освещенности : [c.179]    [c.357]    [c.214]    [c.357]    [c.667]    [c.17]    [c.189]    [c.71]   
Основы оптики Изд.2 (1973) -- [ c.179 ]



ПОИСК



Закон освещенности от точечного источника

Освещенность

Освещенность закон обратных квадратов



© 2025 Mash-xxl.info Реклама на сайте