Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость распространения направление

В момент t = О твердая поверхность внезапно начинает двигаться со скоростью V в направлении Проанализируем распространение возмущения (в данном случае ненулевой компоненты скорости в направлении х ) в направлении х .  [c.294]

Важно отметить, что в ходе экспериментов было также установлено скорость распространения продольных ультразвуковых волн в различных направлениях проката различна.  [c.343]

Осталось решить задачу о зависимости скорости распространения световой волны в -анизотропной среде, а следовательно, и показателя преломления анизотропной среды от ее конкретных свойств, определяемых главными значениями диэлектрической проницаемости Ву, Sy и е,.. С этой целью составим уравнение, определяющее фазовую скорость (или аналогичным путем скорость по лучу) распространения световой волны в анизотропной среде в зависимости от направления N.  [c.251]


Различное поведение обыкновенного и необыкновенного лучей обусловлено различной ориентацией электрического вектора относительно оптической оси кристалла. Электрический вектор обыкновенного луча колеблется перпендикулярно оптической оси. Поэтому при любом направлении распространения обыкновенного луча взаимная ориентация электрического вектора и оптической оси остается неизменной, что приводит к независимости скорости распространения обыкновенного луча от направления Vx = Vy = Vq).  [c.260]

В необыкновенном луче электрический вектор расположен в главном сечении (плоскости, проходящей через оптическую ось кристалла и падающий луч). В результате этого в зависимости от направления распространения необыкновенной волны угол между электрическим вектором и оптической осью меняется от О до 90 , что приводит к изменению скорости распространения необыкновенного луча = Vg от некоторого максимального или минимального (в зависимости от знака кристалла) значения скорости Ve до значения скорости обыкновенного луча t o- Соответственно показатель преломления для необыкновенного луча в зависимости от направления распространения в кристалле принимает значения между и п . Например, для исландского шпата (отрицательный кристалл) По — 1,658 п, = 1,486.  [c.260]

В заключение покажем, исходя из лучевых поверхностей в одноосных кристаллах, что двум лучам со скоростями ys и vs, идущим по одному и тому же направлению соответствуют два не параллельных между собой плоских фронта со скоростями распространения v n и vh и с нормалями Ni и С этой целью направим из некоторой точки О кристалла (рис. 10.12) луч света Si,2- Очевидно, что в этом направлении луч распространяется с двумя различными скоростями v s и Vs. Если учесть, что плоскости, касательные к лучевой поверхности в точке пересечения ее с лучом, являются плоскостями волнового фронта и скорости по нормали перпендикулярны этим плоскостям и что, кроме того, нормаль и луч для обыкновенного луча направлены вдоль одной линии, го, проведя нормали к поверхностям I и II, получим =/= vh- Аналогичным образом убедимся, что двум параллельным фронтам волны с нормалью Л 1,2 и со скоростями распространения v n и v соответствуют два луча Si и со скоростями v s ф й. образующие некоторый угол между собой (рис. 10.12). Чтобы найти направление луча S,, нужно провести касательную к эллипсоидальной поверхности (пло-  [c.260]

Вышеизложенное позволяет нам еще раз отметить, что каждая падающая на одноосный кристалл волна в общем случае вызывает две преломленные волны. Каждой преломленной волне соответствует свое направление луча и своя лучевая скорость — скорость распространения энергии в кристалле. Обыкновенный луч распространяется по направлению нормали к волне со скоростью, не зависящей от направления. Необыкновенный луч образует с нормалью некоторый угол и имеет скорость, зависящую от направления. Это явление мы и называем двойным лучепреломлением.  [c.261]


Если различие в скорости распространения лучей, поляризованных по кругу влево и вправо, приводит к вращению плоскости поляризации, то различие коэффициентов поглощения этих же лучей приводит к эллиптической поляризации. Это связано с тем, что поляризованные по кругу компоненты с амплитудами = -t o/2 и = = /о2 при прохождении слоя вещества поглощаются по-разному, в результате чего их амплитуды при выходе из вещества становятся неодинаковыми. Сложение двух круговых колебаний разных амплитуд дает эллиптически-поляризованный свет, причем направление вращения по эллипсу будет совпадать с направлением вращения поляризованной по кругу компоненты, которая поглощается в меньшей степени. Круговой дихроизм характеризуется эллиптичностью, т. е. отношением полуосей эллипса. Тот факт, что эллиптичность не зависит от различия скоростей распространения левой и правой волн, а угол поворота плоскости поляризации — от вели-  [c.299]

Рассмотрим функции/j (gj) и (g ) по отдельности, т. е. примем сначала, что у = ft (11)- Если в начальный момент времени t = о (рис. 176) отметить начальное возмущение Vg, соответствующее х = хд и, следовательно, gjo == х , то у = Vg, если при изменении х и = х —agt=Xg остается постоянной. Отсюда получаем, что X = Х( -ф agi, т. е. что возмущение Vg сместится за время t в положительном направлении оси Ох на расстояние agi. Скорость этого смещения постоянна и равна ад. Таким образом, Од является скоростью распространения в покоящемся газе малых возмущений скорости и соответственно всех других малых возмущений. Начальное возмущение скорости на отрезке О X Xj за время i без изменения формы сместится на расстояние в положительно.м направлении оси Ох.  [c.566]

Вместе с тем вектор S -= [EH], определяющий направление распространения потока энергии (а также единичный вектор Si = S/S), перпендикулярен векторам Е и Н и не совпадает с направлением к , так как известно, что D и Е не коллинеарны. Рис. 3. 14 иллюстрирует эти следствия решения уравнений Максвелла. Следовательно, при распространении электромагнитной волны в кристалле фазовая скорость и ( направленная по kj) U лучевая скорость U (совпадающая по направлению с вектором  [c.126]

Уравнение (2.392) называется уравнением Кристоффеля оно является основным в теории распространения волн в кристаллах. Из этого уравнения для каждого направления п получаются три скорости распространения плоских волн в изотропном случае для любого нанравления п получаются две скорости [два из трех корней уравнения (2.392) совпадают].  [c.107]

Зависимость частоты от направления волнового вектора приводит к тому, что скорость распространения волны U = d o/<3k не совпадает по направлению с к. Представив зависимость <в(к) в виде  [c.65]

Подсчитаем теперь число возможных звуковых возмущений. Оно зависит от относительной величины скоростей газа v, и скоростей звука С, Сг- Выберем направление движения газа (со стороны / на сторону 2) в качестве положительного направления оси X. Скорость распространения возмущения в газе I относительно неподвижной ударной волны есть u —V , а в газе 2 U2 — V2 dz С2. Тот факт, что эти возмущения должны распространяться по направлению от ударной волны, означает, что должно  [c.468]

Мы получаем, таким образом, опять простые волновые уравнения. Стоящие в них коэффициенты различны для и Uy. Скорость распространения волны с колебаниями, параллельными направлению распространения (mJ, равна  [c.139]

Из электромагнитной теории света вытекает непосредственно, что световые волны поперечны. Действительно, вся совокупность законов электромагнетизма и электромагнитной индукции, краткое математическое выражение которой заключено в уравнениях теории Максвелла, приводит к выводу, что изменение во времени электрической напряженности Е сопровождается появлением переменного магнитного поля Н, направленного перпендикулярно к вектору Е, и обратно. Такое переменное электромагнитное поле не остается неподвижным в пространстве, а распространяется со скоростью света вдоль линии, перпендикулярной к векторам и //, образуя электромагнитные, в частности световые, волны. Таким образом, три вектора Е, Н ц скорость распространения волнового фронта о взаимно перпендикулярны и составляют правовинтовую систему т. е. электромагнитная волна поперечна ).  [c.370]


Основная трудность, на которую наталкивается экспериментатор при определении скорости распространения света, связана с огромным значением этой величины, требующим совсем иных масштабов опыта, чем те, которые имеют место в классических физических измерениях. Эта трудность дала себя знать в первых научных попытках определения скорости света, предпринятых еще Галилеем (1607 г.). Опыт Галилея состоял в следующем два наблюдателя на большом расстоянии друг от друга снабжены закрывающимися фонарями. Наблюдатель А открывает фонарь через известный промежуток времени свет дойдет до наблюдателя В, который в тот же момент открывает свой фонарь спустя определенное время этот сигнал дойдет до Л, и последний может, таким образом, отметить время т, протекшее от момента подачи им сигнала до момента его возвращения. Предполагая, что наблюдатели реагируют на сигнал мгновенно и что свет обладает одной и той же скоростью в направлении АВ и ВА, получим, что путь АВ + ВА = 2Д свет проходит за время т, т. е. скорость света с = 20/х. Второе из сделанных допущений может считаться весьма правдоподобным. Современная теория относительности возводит даже это допущение в принцип. Но предположение о возможности мгновенно реагировать на сигнал не соответствует действительности, и поэтому при огромной скорости света попытка Галилея не привела ни к каким результатам по существу, измерялось не время распространения светового сигнала, а время, потраченное наблюдателем на реакцию. Положение можно улучшить, если наблюдателя В заменить зеркалом, отражающим свет, освободившись таким образом от ошибки, вносимой одним из наблюдателей. Эта схема измерений осталась, по существу, почти во всех современных лабораторных приемах определения скорости света однако впоследствии были найдены превосходные приемы регистрации сигналов и измерения промежутков времени, что и позволило определить скорость света с достаточной точностью даже на сравнительно небольших расстояниях.  [c.418]

Мы уже ознакомились с важнейшими фактами, характеризующими распространение света в кристаллах. Основное отличие кристаллической среды от сред, подобных стеклу или воде, состоит в явлении двойного лучепреломления, обусловленном, как мы видели, различием скорости распространения света в кристалле для двух световых волн, поляризованных во взаимно перпендикулярных плоскостях. С этой особенностью связано и различие в скорости распространения света по разным направлениям в кристалле, т. е. оптическая анизотропия кристаллической среды. Обычно, если среда анизотропна по отношению к одному какому-либо ее свойству, то она анизотропна и по другим свойствам. Однако можно указать случаи, когда среда может рассматриваться как изотропная в одном классе явлений и оказывается анизотропной в другом. Так, кристалл каменной соли обнаруживает изотропию оптических свойств, но механические свойства его вдоль ребра и диагонали различны.  [c.495]

Оптически анизотропия среды характеризуется различной по разным направлениям способностью среды реагировать на действие падающего света. Реакция эта состоит в смещении электрических зарядов под действием поля световой волны. Для оптически анизотропных сред величина смещения в поле данной напряженности зависит от направления, т. е. диэлектрическая проницаемость, а следовательно, и показатель преломления среды различны для разных направлений электрического вектора световой волны. Другими словами, показатель преломления, а следовательно, и скорость света зависят от направления распространения световой волны и плоскости ее поляризации. Поэтому для анизотропной среды волновая поверхность, т. е. поверхность, до которой распространяется за время t световое возбуждение, исходящее из точки L, отлична от сферической, характерной для изотропной среды, где скорость распространения V не зависит от направления.  [c.497]

XX, УУ, 22 — главные оси эллипсоида 05 — направление распространения лучей 5 5"5 5" — эллиптическое сечение, перпендикулярное к 05 и определяющее своими главными осями 5 5 и 5"5" направление колеба 1Ия вектора Е п значение лучевых скоростей распространения света V и ь".  [c.502]

Еще яснее представление о поверхности волны можно составить из рис. 26.7, й и б, где изображены трехмерная модель и перспективное изображение трех главных сечений лучевой поверхности. Внешняя поверхность отдаленно напоминает эллипсоид, но обладает четырьмя воронкообразными углублениями в точках, соответствующих М иЛГ на рис. 26.6, в, и похожих на углубления в яблоке. Точки пересечения и Л1 на рис. 26.6, в соответствуют точкам рис. 26.7, где внешняя и внутренняя полости встречаются, так что по направлениям МЛ1 и М М обе скорости распространения светового возбуждения одинаковы (о = и"). Эти направления называются оптическими осями ) кристалла они располагаются симметрично относительно главных направлений кристалла.  [c.504]

Таким образом, для одного п того же волнового вектора к, параллельного направлению [100], возникают три упругие волны — одна продольная и две поперечные. При этом две независимые волны сдвига имеют одинаковые скорости. В случае произвольного направления вектора к имеют место три поляризованные волны, распространяюш иеся с разными скоростями, которые не зависят от частоты колебаний. Как видно из выражений для скоростей (5.14), (5.16), (5.18), чем меньше плотность и чем больше жесткость кристалла, тем выше скорости распространения упругих (звуковых) волн. Из этих же выражений следует, что круговая частота колебаний со пропорциональна волновому числу k, т. е. дисперсионное соотношение получилось таким же, как и для случая упругой струны.  [c.145]

Итак, направление распространения фазы волны (вдоль нормали N) и направление распространения энергии волны (вдоль луча 8) не совпадают между собой. Скорость фазы V, измеренная вдоль нормали (фазовая скорость), будет отличаться от скорости распространения световой энергии и, измеренной вдоль луча (лучевая скорость).  [c.42]


В отсутствие поля молекулы среды расположены хаотически, так что на пути распространения световой волны по любому направлению и с любой ориентацией электрического вектора будут встречаться в среднем одинаковые условия, т. е. в макроскопическом смысле среда является изотропной. Наложение внешнего электрического поля вызовет преимущественную ориентацию молекул, что приведет к появлению в среде выделенного направления, характеризующегося большей поляризуемостью молекул, чем другие направления. В результате среда превращается в анизотропную. Поэтому скорость распространения световой волны будет зависеть от расположения электрического вектора волны внутри среды  [c.66]

Для целей контроля применяют колебания частотой от 50 Гц до 50 МГц. Интенсивность колебаний при этом обычно невелика, не более 1 Вт/см . Как будет показано в 1.1, существуют разные типы акустических волн, отличающиеся скоростью распространения, направлением колебания частиц и другими признаками. Их называют модами (от лат. modus — образец, способ).  [c.6]

Электромагнитные волны поперечны, т. е. векторы напряженности электрического и магнитного полей перпендик ярны направлению распространения самой волны о L Н и v L Е, где и—скорость распространения волны в дайной среде.  [c.21]

Под лучом ц данном .iyiae понимается нормаль к фронту волны, В иг,о-тропных средах (среда, скорость распространения света в которой не зависиг от направления) наираБлеиие иормали к фронту во.мны совпадает с направлением переноса энергии — направлением луча. В анизотропных средах, где скорость распространения света зависит от направления, эти два направления — нормаль к фронту волны и направление переноса энергии (луч) — в общем случае не совпадают (си, 4 гл. IX).  [c.118]

В аннзотропных же средах скорость распространения света зависит от направления, в результате чего волновая поверхность  [c.249]

Явление, которое наблюдалось Брэдли, называется аберрацией света. Брэдли сначала не мог объяснить свои наблюдения кажущимся периодическим движением звезд. Наконец, благодаря случайной помощи матросов парусника, на котором Брэдли в числе других совершал путешествие по реке Темзе, ему удалось найтн истинное объяснение этому явлению. Вот как это произошло. Парусник двигался долгое время то вниз, то вверх по реке. В день прогулки дул умеренный ветер. Брэдли заметил, что при каждом повороте парусника флюгер на его мачте немного поворачивался так, как будто изменилось направление ветра. Он этому удивился и обратился к матросам с вопросом, почему направление ветра регулярно меняется при каждом изменении курса парусника. Матросы объяснили Брэдлн, что никакого изменения направления ветра не происходит и все обусловлено только изменением направления движения парусника. Это наблюдение навело Брэдли на мысль, что в явлении аберрации роль ветра играет распространение света, а роль парусника играет Земля. Следовательно, явление аберрации обусловлено вращением Земли вокруг Солнца и конечностью скорости распространения снега и не имеет никакого отношения к собственному движению звезды.  [c.415]

Преломленне волн. Для наблюдения процесса распространения волн через границу раздела двух сред с различными физическими свойствами поставим следующий опыт. На дно волновой ванны поло им стеклянную пластинку таким образом, чтобы один ее край был 1засположен под углом около 45 к направлению распространения плоских поверхностных волн на воде. Наблюдения показывают, что расстояние / , проходимое Болной над стеклянной пластинкой, меньше расстояния h, которое проходит за то же время волна в Toii части ианны, где нет пластины (рис. 224). Следовательно, скорость распространения поверхностных волн зависит от глубины (толщины слоя воды), с уменьшением глубины скорость распространения волны уменьшается.  [c.226]

Рассмотрим волну, распространяющуюся в положительном направлении оси х. для нее u = v с. В 99 была вычислена производная от v -с по плотности (см. (99,10)). Мы видели, что du/dp > 0. Таким образом, скорость распространения заданной точки профиля волны тем больше, чем больще плотность. Если обозначить посредством q скорость звука для плотности, равной равновесной плотности ро, то в местах, где имеется сжатие, р > Ро и с > Со в точках разрежения, напротив, р С ро и с < Со.  [c.529]

Для одномерного нестационарного двимсения можно ввести характеристики как линии в плоскости х, t, угловой коэффициент которых dx/dt равен скорости распространения малых возмущений относительно неподвижной системы координат. Возмущения, распространяющиеся относительно газа со скоростью звука в полол ительном или отрицательном направлении оси х, перемещаются относительно неподвижной системы со скоростью v -f- с или V — с. Соответственно дифференциальные уравнения двух семейств характеристик, которые мы будем условно называть характеристиками С+ и С , гласят  [c.542]

Для определения линейной комбинации векторов щ и щ, дающей истинное смещение и, надо обратиться к предельным условиям на границе тела. Отсюда же определится связь между волновым вектором к и частотой а следовательно, и скорость распространения волны. На свободной поверхности должно выполняться условие tXiftrtft = 0. Поскольку вектор нормали п направлен по оси Zi то отсюда следуют условия  [c.135]

Для звезд, лежащих в плоскости эклиптики, этот эллипс вырождается в прямую, а для звезд у полюса — в окружность. Брадлей действительно обнаружил подобное смещение. Но большая ось эллипса оказалась для всех звезд имеющей одни и те же угловые размеры, а именно 2а = 40",9, что значительно больше ожидаемого параллактического смещения даже для ближайшей к.Солнцу звезды наконец, направление наблюденного смещения оказалось перпендикулярным к ожидаемому вследствие параллакса (см. рис. 20.2, б). Брадлей объяснил (1728 г.) наблюденное явление, названное им аберрацией света, конечностью скорости распространения света и использовал его для определения этой скорости. Годичный параллакс, гораздо менее значительный и зависящий от расстояния до  [c.420]

Итак, направление распространения фазы волны (вдоль нормали N) и направление распространения энергии волны (вдоль луча 5) не совпадают между собой. К этому выводу, полученному путем исследования законов электромагнитного поля в анизотропной среде, мы пришли раньше из простого рассмотрения формы поверхности волны для анизотропной среды (см. 142). Скорость фазы q, измеренная вдоль нормали, будет отличаться от скорости световой энергии v, измеренной вдоль луча (лучевой скорости), так что q v osa (см. упражнение 201). Дву.м значениям скорости фронта по нормали q и q", обусловливающим двойное лучепреломление, соответствуют и два значения скорости распространения энергии, v и v".  [c.501]

Первый такой опыт был выполнен Майкельсоном (1881) и затем повторен с большей точностью Майкельсоном и Морли (1887). В данных опытах была сделана попытка обнаружить абсолютное движение Земли в эфире путем измерения скорости распространения света в направлении, совпадающем с направлением движения Земли, II в направлении, перпендикулярном к нему. Для этой цели Майкельсон использовал свой интерферометр (см. 6.1), который устанавливался таким образом, чтобы одно из его плеч, например FAi (рис. 31.3, а), совпадало с направлением скорости и орбитального движения Земли, а второе плечо РА2 было перпендикулярно к этому направлению. Время, необходимое лучу света, чтобы пройти путь до зеркала А и обратно, будет отлично от времени, которое потребуется лучу на прохождение  [c.207]



Смотреть страницы где упоминается термин Скорость распространения направление : [c.137]    [c.587]    [c.248]    [c.249]    [c.249]    [c.250]    [c.442]    [c.132]    [c.450]    [c.532]    [c.897]    [c.904]    [c.145]    [c.145]    [c.30]    [c.211]   
Основы оптики Изд.2 (1973) -- [ c.617 ]



ПОИСК



Скорость распространения



© 2025 Mash-xxl.info Реклама на сайте