Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Твердый раствор определение типа

Термодинамика выделения фаз при распаде твердых растворов. Распад характерен для твердых растворов, имеющих ограниченную и изменяющуюся с температурой растворимость. Распад происходит у твердых растворов тех составов, которые в определенном диапазоне температур становятся пересыщенными. При этом возможно выделение фаз твердого раствора другого типа и состава или промежуточных фаз. Для технических сплавов наиболее частый случай — распад с выделением промежуточных фаз (карбидов, нитридов, гидридов, интерметаллидов), отличающихся от исходного твердого раствора типом кристаллической решетки. Изменение свободной энергии твердого раство-  [c.496]


Фазы внедрения возникают при взаимодействии металлов переходных групп с металлоидами, у которых незначительные атомные размеры Н(г=0,046 нм), Ы(г=0,071 нм), С(г=0,077 нм). Внедрение атомов металлоидов в кристаллическую решетку металлов (образование фаз внедрения) может проходить при условии, если отношение г металлоида к г металла меньше или равно 0,59. При этом атомы металла образуют решетки типа К8, К12 и Г12, а атомы металлоидов внедряются в них в определенном порядке, характеризующемся координационным числом. Практически в сплавах металлов фазы внедрения не соответствуют стехиометрической формуле (в избытке атомы металла и в недостатке атомы металлоидов), т. е. происходит образование твердых растворов вычитания, Фазами внедрения в сталях и сплавах являются большинство карбидов и нитридов.  [c.33]

Жаропрочность сталей и сплавов, характеризуемая и о , зависит от природы и свойств твердого раствора основы температур плавления, рекристаллизации и атомных связей, соответствующих определенному типу кристаллической решетки основы легирующих элементов термической обработки величины зерна и характера обработки поверхности деталей.  [c.201]

Существует также определенная связь между типом диаграммы состояния для двухкомпонентных сплавов и технологическими свойствами Так, сплавы типа твердых растворов имеют низкие литейные свойства (плохая жидкотеку честь, склонность к образованию трещин). Для эвтектических сплавов характерна высокая жидкотекучесть. Однофазные твердые растворы пластичны и хорошо обрабатываются давлением (прокатка, ковка, прессование), при образовании в структуре эвтектики пластичность сплавов значительно снижается.  [c.42]

Продолжающийся нагрев приводит к коагуляции (укрупнению) 0-фазы. Каждая из указанных стадий не зависит от предшествующих, и они могут накладываться друг на друга и протекать независимо друг от друга. Протекание той или иной стадии искусственного старения зависит от состава сплавов А1—Си и температуры процесса например, при содержании 2% Си и 220° С первой образуется 0 -фаза, в то время как 0"-фаза возникает первой при старении сплава, содержащего 4% Си при 190° С. Таким образом, последовательность образования фаз определяется кинетикой, а не образованием каждой фазы из предшествующей. У некоторых сплавов (например, у магнитотвердых сплавов системы Fe—Ni—А1 типа алии) твердый раствор в определенных условиях охлаждения распадается частично в процессе закалки. При этом образуется ряд неустойчивых промежуточных фаз, что способствует увеличению магнитной энергии. Максимальное упрочнение при искусственном старении связано с начальными стадиями старения. Образование 0-фазы приводит к постепенному разупрочнению сплавов. Чем выше температура старения, тем быстрее достигается упрочнение, но тем меньше его эффект и быстрее происходит разупрочнение. Искусственное старение заканчивается В течение нескольких часов.  [c.111]


В зависимости от природы взаимодействующих металлов и температуры определяющими факторами второй стадии контактного плавления являются процессы, обусловленные или массо-переносом в твердую фазу через жидкую прослойку (образование перенасыщенных твердых растворов и их последующее плавление), или растворением твердого металла в жидком. При затвердевании расплава, образовавшегося при контактном плавлении двух металлов, возникают два спая, различных как по своей природе, так и по строению. Для определения направления развития процесса контактного плавления при постоянных температуре и давлении наиболее удобным критерием является изменение свободной энергии Гиббса. Зависимость свободной энергии от состава для твердой и жидкой фаз в двойных системах эвтектического типа при температурах выше эвтектической приведена на рис. 5. При наличии контакта между  [c.14]

Диаграмма состояния Pr-Tb не построена. В работе [1] сообщается о некоторых результатах определения взаимной растворимости компонентов в системе методом рентгеноструктурного анализа. На основе Рг и ТЬ существуют ограниченные твердые растворы. (аРг) растворяет до 28,4 % (ат.) ТЬ (аТЬ) растворяет до 20 % (ат.) Рг. Обнаружена одна промежуточная фаза со структурой типа aSm, символ  [c.33]

В другой, в определенном интервале концентраций (случай, аналогичный показанному для твердого раствора на рис. 5). Можно указать два основных типа такого рода диаграмм равновесия. В первом из них (рис. 12) твердые фазы имеют составы, лежащие вне разрыва растворимости. Этот тип диаграммы появляется также, когда -фаза оказывается промежуточной  [c.20]

Как показано выше, многие твердые растворы при охлаждении претерпевают превращение, при котором атомы разных типов занимают определенные места в решетке, образуя упо-  [c.302]

В отличие от диаграммы эвтектического типа в этой системе выпавшие из жидкости кристаллы одного твердого раствора, строго определенной концентрации и в определенном количестве, реагируя с оставшейся жидкостью определенного состава и в определенном количестве, образуют кристаллы другого твердого раствора.  [c.102]

Изменение точек мартенситного превращения стали типа 18-8 может служить хорошим показателем для определения растворимости карбидов в у-твердом растворе.  [c.230]

Полиморфизм, аллотропия. Переход элемента (аллотропия) или твердого раствора соединения (полиморфизм) от одного типа решетки к другому при изменении внешних условий (р, Т). Аллотропные модификации стабильны при постоянном давлении в пределах определенных температур и могут превращаться одни в другие.  [c.14]

Упорядочение. При исследовании упорядоченных сплавов можно получить инфор.ма-цию о структурном типе упорядочения (в том числе в разбавленных твердых растворах внедрения), о взаимном расположении упорядоченных и неупорядоченных областей, их форме, особенностях дефектов решетки, доменной структуре упорядочения и др. Специфический дифракционный контраст на изображениях упорядоченных структур связан с возникновением сверхструктурных отражений и с наличием в структуре антифазных доменов, разделенных антифазными границами (АФГ). Поскольку интенсивность сверхструктурных рефлексов пропорциональна степени дальнего порядка, по контрасту на темнопольных изображениях в сверхструктурных отражениях при определенных условиях можно судить о степени упорядочения. Наличие контраста на  [c.57]

Программа не учитывает изменения величин межплоскостных расстояний и интенсивностей отражения для фаз, связанных с легированием и образованием твердых растворов. Очевидно, в этом случае достоверность определения фазового состава будет хуже. Задача. может быть решена в случае известного химического состава сплава. Это позволяет предположить, а затем и подтвердить с помощью теоретического индицирования и расчета интенсивностей присутствие фазы определенного структурного типа.  [c.125]

Рассмотренный способ определения характеристик поликристал-лического материала относится к чистым металлам и сплавам типа твердых растворов с относительно небольшим содержанием примесей или к сплавам-смесям, когда поликристалл состоит из однородных зерен с одинаковой кристаллической решеткой. Для многофазного сплава-смеси, состоящего из N фаз с хаотической ориентацией разнородных кристаллических зерен, при осреднении свойств зерен необходимо учитывать объемное содержание каждой фазы (v = = 1, 2,. .., N). Например, теплопроводность такого многофазного сплава в предположении сферической формы зерен можно найти из условия  [c.79]


Следовательно, по мере увеличения дисперсности цементита значение фактора, способствующего повышению прокаливае-мости (увеличение легированности твердого раствора вследствие растворения карбидов), постепенно уменьшается, а значение факторов, снижающих прокаливаемость (увеличение химической микронеоднородности, плотность дефектов кристаллического строения, зародышевое влияние), все более возрастает. При определенном (для каждого типа стали) соотношении мелких и крупных карбидных частиц, т. е. при определенном d p, действие указанных факторов уравновешивается. Этому моменту должна, по-видимому, отвечать максимальная прокаливаемость. При дальнейшем увеличении дисперсности роль отрицательно действующих факторов становится преобладающей, и прокаливаемость стали снижается.  [c.81]

Снижение скорости растворения сплава типа твердого раствора будет уменьшаться почти до нуля при формировании на поверхности вполне стойкого в данных условиях поверхностного слоя, или, стабилизироваться на какой-то определенной величине, если благодаря изменяющимся условиям, например, смещению потенциала, начнут растворяться также и атомы более стойкого компонента. В последнем случае скорость растворения сплава будет определяться кинетикой растворения более стойкого компонен-  [c.71]

Известно, что в промышленных алюминиевомагниевых сплавах и особенно в сплавах с содержанием около 7% магния (тип A-G7) в напряженном состоянии в некоторых случаях проявляется так называемая межкристаллитная коррозия- После закалки и отпуска при достаточно высокой температуре сплав делается невосприимчивым к этому типу коррозии напротив, межкристаллитная коррозия снова возникает, когда подвергшийся закалке твердый раствор подвергается затем отпуску в определенном температурном интервале и притом в течение тем более длительного времени, чем ниже температура. С другой стороны, наклеп после закалки способствует развитию процесса, приводящего к сенсибилизированному состоянию. Тот факт, что нижний критический предел температурного интервала может  [c.264]

Твердые раствлрьв замещения. При образовании твердых растворов этого типа, в узЖх рёшетки атомы растворителя замещаются атомами растворяющегося элемента. Твердые растворы замещения обычно образуются в том случае, когда взаимодействующие компоненты обладают одинаковой по типу кристаллической решеткой, когда их атомные радиусы примерно одинаковы или мало отличаются друг от друга и когда элементы, образующие сплав, расположены в одной или близких группах периодической системы. При отклонениях от этих условий возможно образование механических смесей или твердых растворов с ограниченной растворимостью, когда оба компонента образуют друг с доугом твердые растворы лишь до определенной концентрации, а при бол /ем содержании одного из компонентов сплав становится двухфазным.  [c.49]

Упорядочение может быть полным и неполным, когда все или часть атомов соответственно занимают определенное место в решетке. Упорядочение связано с диффузией, причем медленное охлаждение способствует этому процессу. От упорядочения зависит изменение параметра кристаллической решетки, хотя ее тип и строение остаются неизменными. Иногда возможно незначительное искажение. Так в упорядоченном растворе СпАп параметр с/й=0,935 и тип решетки Т12 а в неупорядоченном твердом растворе — с/й=1,0 и решетка К12.  [c.34]

При дальнейшем медленном охлаждении непрерывные твердые растворы этих двойных систем в определенном интервале концентраций образуют химические соединения FeNi3 РеСо, РеСг и FeV. Марганец, вольфрам, молибден, титан, ниобий, алюминий и цирконий образуют с железом твердые растворы замещения ограниченной растворимости. Причем, если количество введенных элементов превышает их предел растворимости с железом, то легирующие элементы образуют с железом химические соединения. На рис. 22 показана диаграмма состояния Fe - W. Тип диаграммы характерен для систем Fe - А1 (рис. 23), Fe - Si, Fe - Mo, Fe - Ti, Fe - Та и Fe - Be.  [c.45]

Ферриты данного типа представляют собой взаимные твердые растворы (NiO-2п0)Ре20з, образующие кристаллическую структуру смешанной шпинели. В зависимости от содерлонпя аитиферромагнитного цинкового феррита и различных добавок, а также от технологических факторов (величина зерна, температура спекания и др.) получают материалы с начальной магнитной проницаемостью от 10 до 5000. Промышленные ферриты имеют 2000 (табл. 18.1). Однако можно получить 1-1 = 5000 при определенном составе и технологии. С величиной магнитной проницаемости тесно связаны и другие параметры,  [c.247]

Первоначально при выборе матрицы и волокна для всех систем предполагали использовать те же основные принципы, что и для модельных систем. Джех и др. [22] показали справедливость правила смеси для композитов как с непрерывными, так и с короткими волокнами, избрав для этого систему медь — волокно. Медь и вольфрам, по существу, взаимно не растворимы и не взаимодействуют химически соответственно они не образуют соединений. Таким же образом Саттон и др. [38] на модельной системе серебро — усы сапфира убедительно продемонстрировали эффект упрочнения нитевидными кристаллами. Степень взаимодействия между серебром и усами сапфира даже меньше, чем между медью и вольфрамом, поскольку расплавленное серебро не смачивает сапфир. Для улучшения связи с расплавленным серебром те же авторы напыляли на поверхность сапфира никель. Однако связь между никелем и сапфиром была, вероятно, чисто механической, а на поверхности раздела никель — сапфир твердый раствор не образовывался. Поэтому не удивительно, что Хиббард [21] в обзоре, представленном в качестве вводного доклада на конференции 1964 г. Американского общества металлов, посвященной волокнистым композитным материалам, счел необходимым заключить Для взаимной смачиваемости матрицы и волокна необходимо, чтобы их взаимная растворимость и реакционная способность были малы или вообще отсутствовали . Это условие, как правило, реализуется для определенного типа композитных материалов, а именно, ориентированных эвтектик. Во многих эвтекти-ках предел растворимости несколько изменяется с температурой, что, вообще говоря, является причиной нестабильности, хотя в известной степени и компенсируется особым кристаллографическим соотношением фаз. Однако в большинстве практически важных случаев это условие не выполняется. После конференции 1964 г. основные успехи были достигнуты в области управления состоянием поверхности раздела между упрочнителем и матрицей. Ни серебро, ни медь не являются перспективными конструкционными материалами. Что же касается реакций между практически важными матрицами и соответствующими упрочнителями, то они очень сложны и могут приводить к самым разнообразным типам поверхностей раздела.  [c.13]


Найдено, что б-фаза на основе соединения TiRu со структурой типа s l кристаллизуется из расплава с максимумом на кривой кристаллизации при 2120° С. Область ее гомогенности при 1575° С лежит между концентрациями рутения 43 и 51 ат.%, с понижением температуры несколько сужается. С твердым раствором на основе рутения б-фаза образует эвтектику при 1855° С, что почти на 100° выше найденной в работе [26]. Сплавы, содержащие 70—80 ат.% Ru, которые выдерживали на установке для определения температур солидуса при 1820° С, признаков плавления не обнаруживали. Выше температуры солидуса сплавы, близкие к эвтектическому (когда образуется большое количество жидкости) перегреть на этой установке невозможно. Судя по микроструктуре сплава, содержащего 85 ат. % Ru, отожженного при 1855° С, этот сплав лежит на конце эвтектической горизонтали, и максимальная растворимость титана в рутении.  [c.177]

Многие из величин Ос еще требуется определить количественно или хотя бы качественно. Тем не менее мы предположим, что при определенных составах и микроструктурах сплавов, средах и состояниях напряжения некоторые эффекты должны быть доминирующими. В частности, применяя этот метод анализа к основному примеру поведения I типа, а именно к случаю суперсплава на никелевой основе с умеренно крупным зерном [14, 18—21], мы отметим в соответствии с эффектами, перечисленными в табл. 5, следующие положения. В такой упрочненной системе, как данный сплав (временное сопротивление 1033 МПа даже при 760 °С [169]), маловероятно, чтобы какие-либо эффекты твердого раствора существенно влияли на внутренние напряжения. Выше отмечалось, что зернограничными эф( ектами также пренебрегали. Основной эффект, как можно предположить, в этом случае будет связан с величинами Ос, аналогичными входящим в уравнение (19). Иными словами, упрочнение рассматриваемой системы на воздухе обусловлено противодействием образованию и движению дислокаций со стороны окалины с хорощей адгезией, формирующейся при испытаниях на ползучесть на воздухе, но отсутствующей при испытаниях в вакууме (см. рис. 10) или в горячей солевой среде [14]. Микрофотографии, представленные на рис. 10, показывают также, что в результате ползучести (как на воздухе, так и в вакууме) поверхностные слои подложки постепенно становятся однофазными. На воздухе образуется фаза у, вероятно, посредством селективного окисления алюминия и титана, а в вакууме образуется фаза у вследствие испарения хрома. Важно, что ни в одном случае поверхностные слои подложки не являются дпсперсиоупроч-ненными. Таким образом, эти эффекты будут иметь тенденцию к самокомпенсации при любых попытках, подобных этой, проанализировать сравнительное поведение системы на воздухе и в вакууме.  [c.37]

Восстановительные равновесия, включающие газовую фазу и чистый металл. Примером реакции этого типа может служить уравнение Fe (чистое) + HgO = Hg + FeO (в твердом растворе с MgO), изученное Шенком и сотрудниками [317, МЭ, 321—325, 328]. Количественные данные пока отсутствуют. Этот метод аналогичен определениям активности в металлических растворах путем измерений равновесий с чистыми оксидами, сульфидами и т. д. (см. гл. VI, п. 3).  [c.138]

Задача достижения того или иного комплекса свойств на р-спла-вах может решаться следующими двумя путями 1) нагрев до температуры 780—900° С с последующим охлаждением в воде или на воздухе, при этом механические скойства определяются степенью однородности твердого раствора, величиной и формой зерен 2) получение определенного типа структуры в результате сложной термообработки (закалка, одно- или двухступенчатое старение) в этом случае уровень механических свойств определяется природой и дисперсностью продуктов распада р-твердого раствора и равномерностью их распределения.  [c.76]

Образование пор при растворении кристаллов избыточной фазы сопряжено с определенными трудностями. Помимо напряжений, возникающих в твердом растворе из-за наличия градиента концентраций и объемных изменений, на формирование пористости влияет нескомпенсирован-ность атомных потоков и механизм перехода атомов через межфазную поверхность. Избыточные вакансии, образующиеся при растворении включений, во многих случаях устраняются на границах зерен, дислокационных ступеньках или образуют призматические петли. Возникающее вблизи включений пересыщение вакансиями может оказаться достаточным для проявления свойств сверхпластичности и недостаточным для порообразования. Пористость, по-видимому, не формируется при растворении включений, сохраняющих когерентную связь с твердым раствором. Она, однако, легко возникает при растворении кристаллов типа графита, когда восстановление непосредственного контакта фаз возможно благодаря разрушению включений избыточной фазы. Аналогичная картина может наблюдаться и при растворении жидких включений.  [c.99]

На рис 67 приведены данные о хладноломкости спокойной (сп) и кипящей (кп) стали типа СтЗ Порог хладноломкости кипящей стали на 30—40°С выше, чем у спокойной Это проявляется при определении порога хладноломкости по всем показателям ударной вязкости, % волокна в изломе, работе развития и зарождения трещины Полуспокойная сталь по хладноломкости занимает проме жуточное положение между спокойной и кипящей сталью, в прокате же небольших сечений (до 10—15 мм) полуспокойная сталь по хладноломкости приближается к спокойной Хладноломкость кипящей стали обусловлена наличием в твердом растворе азота, не связанного в нитриды, и высоким содержанием вредных примесей (Р, S, О, N) Нёоб ходимо также отметить, что кипящая сталь наиболее склонна к деформационному старению (см гл XIII)  [c.124]

Как уже отмечалось в п.4.3 и 7.2, наряду с чисто гетерогенным зарождением дислокаций по модели призматического вьщавливания их на включениях в определенном интервале действующих напряжений и температур может иметь место конденсационный механизм образования петель, размер которых определяется степенью деформационного пересыщения по точечным дефектам и процессами неконсервативного движения дислокаций. В работах [497 -500, 595, 607, 608] была весьма убедительно продемонстрирована начальная стадия работы источников Франка-Рида на так называемых Л-кластерах, т.е. ростовых петлях вакансионного и внедренного типа. Таким образом, основными центрами зарождения и размножения дислокаций в полупроводниковых кристаллах являются скопления вакансий, меж-узельных атомов, а также преципитатов примесей, возникающих при распаде пересыщенного твердого раствора. Однако в дополнение указанного авторами [497-500, 595, 607, 608] механизма размножения следует также отметить тот факт, что генерация дислокаций от ростового типа гетерогенностей в общем случае, по-видимому, все же является частным вариантом размножения.  [c.243]

Таким образом, в сплавах системы Fe—Мп хладноломкость обнаружена у всех трех твердых растворов-4 а, е и Y, имеющих кубическую объемно-центрированную, гексагональную плотноупакованную и кубическую гранецентри-рованную решетки соответственно, что противоречит общепринятому мнению, согласно которому металлы, имеющие ГЦК-решетку, хладноломкбстью не обладают. Следовательно, принадлежность металла к определенному типу кристаллической структуры — недостаточное условие хла-достойкости. Подобное постоянство во влиянии марганца в интервале концентраций от 4 до 54% Мп, очевидно, связано с природой его воздействия [1].  [c.203]

Требуемая дисперсность продуктов распада пересыщенных растворов переходных металлов в алюминии и равномерность их распределения по объему матрицы могут быть достигнуты при определенных условиях получения полуфабрикатов алюминиевых сплавов. Наиболее важное условие — высокая скорость охлаждения при кристаллизации. Это обеспечивает достижение необходимого пересыщения твердого раствора и одновременно уменьшает сегрегацию переходных металлов, обусловленную внутрикристаллической ликвацией, В частности, при легировании цирконием уменьшается его сегрегация в центре дендритных ячеек, которая возникает соответственно перитектическому типу диаграммы состояния этого элемента с алюминием. Наряду с достижением определенной пересыщенно-сти твердого раствора ускоренная кристаллизация слитков супрала приводит также к уменьшению ширины приграничных зон, обедненных цирконием [268]. Последнее связано с уменьшением размеров дендритных ячеек. Тем самым обеспечивается большая однородность структуры при последующем рекристаллиза-ционном отжиге. В ином случае в приграничных зонах формируются крупные зерна и, таким образом, усиливается неоднородность структуры сплава в целом.  [c.167]


Трактовка изменений периода решетки и плотности в сплавах на основе Ni — А1 затруднена тем, что никель является переходным металлом, для которого необходимо допустить наличие нулевой валентности, чтобы иметь возможность считать вышеописанную фазу электронной фазой типа 3/2. Однако образование вакансий было обнаружено также при изучении у-латуней (Юм-Розери и др. [50]), оловянных сплавов (Рейнор и Ли [96]) и ограниченных твердых растворов в системе А1 — Zn (Эллвуд [26, 27]). Во всех этих сплавах переходных металлов нет, и валентности элементов, принимающих участие в образовании сплавов, имеют вполне определенные значения. Фазы типа у-латуней были исследованы в двух двойных системах Сц — А1 и Си Ga (Юм-Розери и др. [501). Исследование периодов решетки и плотности в системе Си — А1 показало, что при увеличении содержания алюминия вплоть до 35,3 ат.% число атомов на элементарную ячейку остается постоянным, равным приблизительно 52, а при дальнейшем увеличении содержания алюминия оно начинает постепенно падать. Аналогичный эффект наблюдается и в системе Си — Ga при введении в у-фазу более 35,4 ат.% галлия. Результаты исследования истем Си — AI и Си — Ga представлены на фиг. 27. В работе Юм-Розери и его сотрудников [50] образование вакантных узлов в структуре у-фаз интерпретируется на основе теории зон Брил-люэна для у-латуней. При этом предполагается, что как нормальная, так и дефектная структура могут содер кать не более 87— 88 электронов на элементарную ячейку, чтобы не превысить определенную величину электронной концентрации — около 1,68— 1,7. Оказалось, что структура высокотемпературной б-фазы в системе Си — Zn сходна с дефектной структурой улатуней в том отношении, что она также характеризуется наличием большого числа дислоцированных атомов и вакантных узлов.  [c.202]

В работе Жаккарино и др. [53] методами ядерного магнитного резонанса и электронного парамагнитного резонанса были определены величина и знак поляризации электронов проводимости у соединений типа (РЗЭ) Alg. Спиновый момент S неспаренных 4/-электронов редкоземельного элемента поляризует спины электронов проводимости S таким образом, что спины ионов редкоземельного элемента и спины электронов проводимости располагаются в антиферромагнитном порядке, если допустить одинаковую поляризацию последних. Эта работа явилась первым определением знака поляризации электронов проводимости в магнитных металлах, которая дала возможность разобраться в магнитных свойствах соединений (РЗЭ)А12 и твердых растворов между ними.  [c.238]


Смотреть страницы где упоминается термин Твердый раствор определение типа : [c.60]    [c.181]    [c.61]    [c.39]    [c.303]    [c.28]    [c.28]    [c.352]    [c.71]    [c.220]    [c.132]    [c.243]    [c.120]    [c.219]    [c.151]    [c.103]   
Металловедение и термическая обработка (1956) -- [ c.138 ]



ПОИСК



Определение твёрдые -

Раствор твердый

Твердые растворы, типы



© 2025 Mash-xxl.info Реклама на сайте