Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усталостная прочность (циклическая)

При нагреве в открытых печах может происходить определенное изменение поверхностного слоя. Температура релаксационных отжигов обычно не превышает 700° С. Отжиг при таких температурах и выдержке в несколько часов практически не сказывается на обычных характеристиках прочности и пластичности титановых деталей (при не очень тонкостенных изделиях). В работе [79] изучался вопрос влияния отжига при температуре 650 и 700° С листов из титанового сплава 0Т4-1 на его усталостную прочность. Циклические испытания проводились на достаточно представительных партиях образцов, по которым делалась оценка  [c.178]


Усталостная прочность (циклическая) 66  [c.1654]

Предел выносливости - это наибольшее по абсолютной величине напряжение цикла, при котором материал не разрушается при заданном количестве циклов. Предел выносливости еще называют пределом усталости, однако последний термин к употреблению не рекомендуется, также как вместо терминов усталостная прочность , циклическая прочность , выносливость рекомендуется употреблять термин сопротивление усталости .  [c.80]

Детали, подвергающиеся длительной повторно-переменной нагрузке, разрушаются при напряжениях значительно меньших предела прочности материала при статическом нагружении. Это имеет большое значение для современных многооборотных машин, детали которых работают в условиях циклических нагрузок при общем числе циклов, достигающем за весь период службы машины многих миллионов. Как показывает статистика, около 80% поломок и аварий, происходящих при эксплуатации машин, вызвано усталостными явлениями.-Поэтому проблема усталостной прочности является ключевой для повышения надежности и долговечности машин. -  [c.275]

Отрицательно действуют на циклическую прочность гальванические покрытия твердыми и прочными металлами (Сг, N1). Покрытия пластичными металлами (Си, Zn, Сё, 8п, РЬ) на усталостную прочность влияют мало.  [c.306]

В случаях, когда не удается ликвидировать циклические нагрузки или снизить циклические напряжения, следует прибегать к специальным способам повышения усталостной прочности.  [c.315]

Долговечность циклически нагруженных соединений определяется усталостной прочностью материала. Кривые усталостной прочности ирп контактном нагружении в общем близки к кривым усталости для случаев  [c.344]

Свободные поверхности (не входящие в соединения или расположенные с зазором по отношению к ближайшим поверхностям) следует в интересах экономичности обрабатывать по низким классам шероховатости. Исключение составляют напряженные циклически нагруженные детали. Д.ТЯ повышения усталостной прочности такие детали обрабатывают кругом, чтобы обеспечить высокий класс шероховатости поверхности, полируют и дополнительно упрочняют поверхностной пластической деформацией.  [c.414]

Имея диаграмму предельных циклов для того или иного материала, построенную по экспериментальным данным, всегда можно определить степень опасности рассматриваемого цикла напряжений в отношении усталостной прочности. Вначале по формуле (15.4) находят угол ср, а затем под этим углом проводят луч до пересечения с кривой АВС. Сумма координат точки пересечения равна величине а г. Совершенно очевидно, что если точка М, характеризующая заданный цикл, расположена внутри области ОАВС, то циклическая прочность материала будет обеспечена.  [c.227]


Из всего изложенного следует, что наличие концентрации напряжений снижает усталостную прочность детали. Поэтому при проектировании машин следует стремиться к тому, чтобы влияние местных напряжений было сведено к минимуму. Достигается это, прежде всего, конструктивными мерами. Для ответственных деталей, работающих в условиях циклических напряжений, внешние обводы стремятся сделать возможно более плавными, радиусы закругления ио внутренних углах увеличивают, необходимые отверстия располагают в зоне пониженных напряжений и т. д.  [c.401]

Так как при циклических напряжениях начало разрушения связано с образованием местной трещины, понятна та роль, которую играет в усталостной прочности детали состояние ее поверхности. Совершенно очевидно, что в случае чистой и тонко обработанной поверхности предел усталости возрастает. При грубой обработке наличие мелких поверхностных дефектов приводит к снижению показателей усталостной прочности. При этом для материалов, обладающих большой чувствительностью к местным напряжениям, влияние состояния поверхности будет более заметным.  [c.402]

Поверхности деталей, работающих при высоких циклических нагрузках, следует обрабатывать с максимальной, экономически приемлемой степенью чистоты. Все виды отделочных операций (полирование, притирка и т.д.), сглаживая микронеровности, остающиеся на поверхности после предыдущей, более грубой механической обработки, способствуют повышению усталостной прочности, особенно для деталей, изготовленных из высокопрочных и твердых материалов.  [c.60]

Долговечность ремня определяется его усталостной прочностью. При работе в ремне возникают циклически изменяющиеся напряжения, в результате чего появляются усталостные разрушения (трещины, надрывы), которые, развиваясь, выводят ремень из строя. Усталостная выносливость ремня определяется величиной возникающих напряжений а ах и числом циклов нагружения за весь период службы  [c.283]

Расчет на усталостную прочность. Он заключается в определении расчетных коэффициентов запасов прочности в предположительно наиболее опасных сечениях. При работе валы испытывают циклические напряжения. Принимают, что напряжения изгиба изменяются по симметричному циклу, а напряжения кручения — по отнулевому (пульсирующему) циклу (см. рис. 13.1, б).  [c.387]

Исключительная стойкость титана во многих природных и промышленных агрессивных средах делает его ценным материалом, но чувствительность к концентрациям напряжений иногда резко снижает эффективность его применения, хотя правильное использование поверхностной пластической деформации в местах концентраций может свести к минимуму это отрицательное свойство. Следует отметить также сравнительно небольшой опыт эксплуатации титановых сплавов, что требует статистического подхода к анализу результатов испытаний усталостной прочности, выносливости и надежности при циклическом нагружении.  [c.137]

Усталостная прочность может существенно зависеть от текстуры. Так, предел выносливости листов из сплава Т1—4%А1—4% /в продольном направлении прокатки заметно ниже, чем в поперечном (по-видимому, это — следствие призматической текстуры листа) [142]. Результаты исследования влияния текстуры на усталостную прочность показали возможность повышения сопротивляемости полуфабрикатов циклическим нагружениям в определенных направлениях, например вдоль кованого или катаного прутка.  [c.155]

Фретинг-эффект. Сильное влияние на усталостную прочность титановых сплавов оказывает фретинг-эффект, или контактная коррозия в местах сопряжения. Наличие контактного трения при циклическом нагружении у всех металлов приводит к заметному снижению усталостной прочности, особенно в коррозионных средах. Титановые сплавы в этом отношении мало отличаются от сталей, близких к ним по прочности [106, 158—160]. Возникающее контактное трение (в местах заделок, прессовых посадок, креплений и пр.) резко снижает усталостную прочность, действуя подобно концентратору напряжений. Степень снижения ее в основном зависит от сопряженного материала, вызывающего фретинг-эффект, удельного давления в месте сопряжения и окружающей среды. Удельное давление [ 158, 160] сильно влияет только при низких значениях. При более прочных креплениях или плотных посадках при удельных давлениях более 30—50 МПа усталостная прочность изменяется мало. Так, прессовая посадка втулки с удельным давлением 50 МПа снижает усталостную прочность технически чистого титана с 320 до 112 МПа [ 158]. Дальнейшее увеличение удельного давления посадки до 200 МПа снизило O j до 103 МПа. В среднем предел выносливости при наличии фретинг-эффекта у титановых сплавов на воздухе при контактировании с однородным сплавом 20- 40 % от исходного предела  [c.161]


Режим и технология точения также могут определенным образом влиять на усталостную прочность. Высокая скорость резания и большая подача заметно снижают предел выносливости вследствие повышения шероховатости поверхности и появления неблагоприятных поверхностных напряжений. Однако имеются режимы резания, которые создают поверхностный наклеп и сжимающие напряжения, повышающие предел выносливости титана. Замечено отрицательное влияние на усталостную прочность титановых сплавов охлаждения жидкостями (вода, эмульсия и пр.) при высоких скоростях резания точением. В этом случае происходит поверхностное наводороживание и даже появление гидридных пленок и слоев, способствующих возникновению растягивающих напряжений и хрупкости поверхности. Во всех случаях конечные операции механической обработки деталей из сплавов титана, подвергающихся систематическим циклическим нагрузкам, необходимо строго регламентировать, а еще лучше предусмотреть специальную поверхностную обработку, снимающую все неблагоприятные поверхностные явления и упрочняющую металл.  [c.181]

Очень часто конечной операцией изготовления полуфабрикатов или деталей из титановых сплавов является химическое травление (листы, ленты, трубы, проволока, штамповка и пр.) с целью удаления газонасыщенного слоя. Оно в значительной степени определяет уровень усталостной прочности. Наиболее часто применяемая операция обработки большинства листов, труб и других профилей — кислотное травление. В результате такой обработки циклическая прочность снижается на 20 —40 % [ 173]. Наибольшее влияние травления на усталость наблюдается у высокопрочных сплавов, наименьшее —у технически чистого титана. Заметное снижение усталостной прочности титана происходит при других видах химической обработки, например после электрохимической обработки (ЭХО). В настоящее время находит все более широкое применение ряд новых видов электрохимической и электрогидравлической обработки поверхности металлов. Влияние этих видов обработки (как финишной) на усталостную прочность титановых сплавов мало изучено. Как правило, после таких видов обработки на поверхности металла образуются тонкие наводороженные слои, что для титановых сплавов нежелательно. Электрогидравлическая обработка поверхности (электро-разрядная, электроимпульсная, электроискровая) —один из новых технологических видов очистки отливок, штамповок и других "черных" поверхностей заготовок. Эта поверхностная обработка сопровождается комплексом физико-химических и механических воздействий на металл [174]. Для титановых сплавов она благоприятна, по-видимому, вследствие сильного поверхностного наклепа и образования сжимающих напряжений у поверхности.  [c.182]

Выполненные авторами исследования показали, что отжиг готовых деталей из титановых сплавов без ущерба для их усталостной прочности можно проводить на воздухе при температуре до 650°С и длительности выдержек до 5 ч. Более высокотемпературную термическую обработку следует вести в аргоне или вакууме. Лучший способ не допустить понижения усталостной прочности — проводить термическую обработку перед конечной обработкой резанием хотя бы тех поверхностей, которые подвергаются циклическим напряжениям.  [c.186]

Ранее была отмечена особая чувствительность усталостной прочности титановых сплавов к характеру финишной поверхностной обработки.. Естественно, что многие исследования были направлены на разработку специальных методов поверхностного упрочнения титана, максимально повышающих его предел выносливости. Выявлен наиболее эффективный способ—применение различных видов ППД. Этот способ уже широко используют для многих металлов, а для титановых сплавов он оказался крайне необходимым и перспективным. По исследованиям в этом направлении в настоящее время постоянно публикуется большое число работ (главным образом в периодической литературе). Можно без преувеличения утверждать, что основные резервы повышения усталостной прочности титановых сплавов состоят именно в правильном выборе метода ППД и финишного сглаживания поверхности деталей, подвергающихся циклической нагрузке. Если для стали основная польза ППД заключается в создании сжимающих поверхностных напряжений, то для титановых сплавов, как уже показано, имеет не меньшее значение повышение прочности (за счет наклепа) и однородности механических свойств поверхностных слоев. Часто поверхностный наклеп титана необходим, чтобы снять неблагоприятный эффект предшествующей обработки, которую исключить из технологического процесса не всегда уда ется (например, шлифование или травление).  [c.196]

Оценка долговечности ВС в целом связана с выявлением наиболее напряженных зон, которые в процессе эксплуатации лимитируют ресурс всей конструкции, не позволяя реализовать для всей конструкции или узла в целом располагаемую ими долговечность. Необходимо также учитывать тот факт, что циклическое нагружение элементов конструкции в процессе эксплуатации осуществляется по законам статистики неравномерно по типам ВС и по условиям их эксплуатации в различных регионах. В связи с этим первоначальное проектирование ВС с обеспечением длительной усталостной прочности осуществлялось по принципу безо-  [c.35]

Большое количество факторов, влияющих на усталостную прочность (употребляется также термин циклическая прочность), предопределило создание многочисленных (Методов усталостных испытаний.  [c.7]

Для оценки параметров вторичных кривых выносливости необходимо знать, как изменяется статическая прочность циклически поврежденного материала (до появления макротрещины она не изменяется). Нелинейная схема накопления усталостных повреждений представлена на рис. 15. Здесь сплошной линией I обозначена характеристическая кривая выносливости, пунктирными линиями 2 я 3 — кривые изменения статической прочности в процессе развития усталостной трещины при Оа 1 и ад 2-  [c.36]


При действии циклических нагрузок на усталостную прочность оказывают влияние два фактора повторность нагрузки и фактор времени. Изменяя частоту нагружения, можно за один и тот же промежуток времени воздействовать на металл различным числом циклов.  [c.113]

В ЦНИИ МПС для повышения усталостной прочности болтов различного назначения проводят натурные испытания узлов конструкций и отдельных болтов. Для отработки отдельных элементов конструкции болтов и технологии их изготовления и упрочнения широко используют испытания болтов на повторное растяжение с перекосом, а также циклический изгиб с определением усталостной прочности отдельных сечений болтов под головкой, по стержню, по месту перехода от гладкой к резьбовой части стержня, а также в резьбовой части с навертыванием втулок для имитации гайки (рис. 128). Последний способ позволяет испытывать на циклический изгиб болты с коротким стержнем.  [c.231]

Поверхностное упрочнение сталей тем или инь. м методом весьма эффектип,ио повышает усталостную прочность в условиях циклических нагрузок и действия многих агрессивных растворов  [c.117]

Появилось также понятие циклической прочности узлов (резьС рьхх, прессовых соединений и других сборных конструкций). Таким образом, в понятие усталостной прочности вводят не только факторы свойств материала и геометрической формы деталей,  [c.283]

Качество обработки. Поверхности деталей, работающих при высоких циклических нагрузках, следует обрабатывать с максимальной, экономически приемлемой чистотой. Отделочные операции (полирование, притирка, суперфинищирование) способствуют повышению усталостной прочности, особенно у деталей из прочных и твердых материалов.  [c.318]

В целом создается первое впечатление, что подобного рода разрушение связано с изменением кристаллической структуры металла. Именно этим и обт.яснялось в свое время разрушение при циклических напряжениях. Описанное явление получило тогда название усталости, а направление исследований, связанных с прочностью, стало называться усталостной прочностью. В дальнейше.м точка зрения на пршшны усталостного разрушения изменилась, но сам термин сохранился.  [c.389]

Влияние электронно-лучевого покрытия Со—Сг—А1— на усталостную прочность сплава ЭИ893ВД исследовали прп температурах 750 и 20 °С с частотой нагружения 220 Гц на базе 10 циклов. Прп высокой температуре предел выносливости образцов с покрытием после восстановительной термообработки (применяемой после нанесения покрытий на лопатки) равен 270 МПа, что всего на 5 % ниже предела выносливости образцов без покрытия (рис. 3), а при комнатной температуре — ниже на —15 %, что допустимо ввиду отсутствия в лопатках циклических нагрузок при 20 "С.  [c.181]

Для получения достоверных сведений по усталостной прочности титановых сплавов конкретной структуры не(обходима количественная оценка разброса результатов циклических испытаний. При этом предел выносливости определяют с заданной вероятностью неразрушения, т.е. оценивают его надежность. Уже первьге статистические обработки результатов усталостных испытаний титановых сплавов показали высокие значения коэффициента вариации условного предела выносливости [96— 98]. Учитывая большой разброс, наиболее правильно для анализа усталостных свойств титановых сплавов применять методы математической статистики и теории вероятности. Для этого строят полные вероятностные диаграммы, например по системе, предложенной Институтом машиностроения АН СССР [99, 100]. Эта система основана ра разделении процесса усталостного разрушения на две стадии до появления макротрещины и развитие трещины до разделения образца на части. При анализе предела выносливости гладких образцов это разделение не имеет принципиального значения, так как долговечность до появления трещины Л/ и общая долговечность до разрушения образца Л/р близки. Часто Jртя построения полных вероятностных диаграмм усталости за основу берут наиболее простой метод, предложенный В. Вейбуллом [ 101 102, с. 58 — 64]. Для построения полной вероятностной кривой необходимо испытать достаточно большие партии образцов (30—70 шт.) на нескольких уровнях амплитуды напряжений, которые должны быть выше предела выносливости (см., например, рис. 92). На каждом из этих уровней по гистограмме определяют вероятность разрушения при данной амплитуде напряжений. Далее ст ят кривую Веллера по средним значениям долговечности. По гистограммам строят кривые равной вероятности в тех же координатах (а — 1дЛ/). Затем строят семейство кривых, определяющих не только зависимость долговечности от амплитуды напряжений, но и вероятности разрушения от заданных амплитуды напряженйй и долговечности. Далее, принимая математическую форму распределения вероятности, на данном уровне напряжений можно строить кривые зависимости либо от амплитуды напряжений при заданной базе испытаний Л/,  [c.141]

Коррозионная усталость. Коррозионная среда отрицательно влияет на усталостную прочность практически всех конструкционных металлов и сплавов. Так, в речной воде, являющейся сравнительно малоагрессивной средой, усталостная прочность нержавеющих сталей снижается на 10— 30 %, углеродистых и легированных конструкционных сталей —в 1,5—2 раза, высокопрочных алюминиевых сплавов —в 2—3 раза. Особенно сильное воздействие среды наблюдается при наличии концентраторов напряжений. Как правило, при испытании в коррозионных средах не наблюдается физический предел выносливости, поэтому при большом числе циклов (10 —10 ) нагружения несущая способность образца может оказаться очень низкой. Это заставляет значительно увеличивать запасы прочности конструкций, подвергающихся циклическим нагрузкам и работающих в коррозионной среде.  [c.158]

Б00°С снижает усталостную прочность на 20—25 %. Это снижение находится на уровне и даже несколькр меньше, чем снижение статической прочности под влиянием соответствующего повышения температуры. Интересно то, что предел выносливости надрезанных образцов значительно меньше зависит от температуры испытания, чем предел выносливости гладких образцов. Изменение усталостной прочности более значительно при отрицательных температурах, чем в диапазоне 20-450°С. Многие исследователи связывают уровень циклической прочности титановых сплавов при повышенных температурах (выше 300°С) непосредственно с длительной прочностью, отождествляя влияние длительности действия статической и циклической нагрузок. Циклическое нагружение в различных температурных областях вызывает различный характер разрушения, особенно в начальной стадии. В диапазоне —196 —+ 200°С разрушение начинается и распространяется преимущественно по двойникам, в области 200—400°С наблюдается обычное для высоких температур разрушение по телу зерен, при более высоких температурах разрушение происходит главным образом по границам зерен.  [c.164]


Б. Б. Чечулиным совместно с Р.Д. Вагановым, И. В. Козловым и Ю. А. Шаманиным были проведены специальные исследования усталостной прочности сплава ВТ6 (0 = 820 МПа, б= 10,6 %, ф—26.4 %) при изгибе, кручении и совместном циклическом нагружении изгибом и кручением. При этом использовали круглые гладкие образцы диаметром 30 мм (табл. 33).  [c.168]

Несгационарность нагружения. При эксплуатации конструкций отдельные детали часто подвергаются нестационарным циклическим нагрузкам. Фактических данных по влиянию нестационарности циклического нагружения на усталостные свойства титановых сплавов мало. Автор работы [ 166] определял влияние циклических перегрузок на усталостную прочность сплава титана ПТ-ЗВ и стали марок 15 и Ст4. Он пришел к выводу, что у материалов, которые имели близкий предел выносливости, одинаковые кратковременные циклические перегрузки могут приводить и к упрочнению, и к разупрочнению, однако закономерности при этом не установлено. Сплав ПТ-ЗВ показал наименьшую чувствительность к перегрузкам. И.В. Козлов, Н. И. Вассерман и др. [ 167] провели исследования усталостной прочности образцов диаметром 10 мм сплава ВТ6 (Ов = 680 МПа, 5 = 16 %, 0= 49 %) при нестационарном нагружении круговым изгибом. Испытание большого количества образцов каждой партии позволяло с достаточной достоверностью проводить статистический анализ результатов и получать вероятностную картину предела выносливости при заданном числе циклов. Это дало возможность исключить влияние на получаемые усталостные характеристики естественного разброса при испытаниях. Прежде всего было определено действие предварительного нагружения циклическими напряжениями ниже стационарного предела выносливости на вторичный предел выносливости (рис. 108). Из рис. 108 видно, что предварительное нагружение сплава ВТ6 приводит к заметному повышению вторичного предела выносливости, несколько большего в области малой вероятности разрушения.  [c.172]

Получение после ППД поверхности с малой шероховатостью—не менее важная задача при достижении у титановых сплавов высоких значений усталостной прочности и циклической долговечности. Многие методы ППД, к сожалению, приводят к увеличению шероховатости, что не позволяет в полной мере использовать эффект ППД. Наиболее распространенный метод ППД —обкатка поверхности деталей роликами или шариками. Это позволяет получить достаточно чисть1й поверхностный  [c.196]

Достижение предела усталости для материала оказывается возможным только в ограниченной области циклического нагружения. При возрастании числа циклов нагрулсения даже для сталей, для которых не наблюдались разрушения на базе 10 -10 циклов, дальнейшее нагружение сопровождается появлением разрушений [99]. Исследования на круглых образцах стали SUJ2, содержащей С — 1,01 % и Сг — 1,45 %, при частоте изгиба с вращением 50 Гц влияния длительного нагружения на усталостную прочность показали следующее (рис. 1.17). Постепенное снижение уровня напряжения позволяет достичь второго предела усталости. Разрушения материала между двумя пределами усталости связаны с возникновением усталостной трещины под поверхностью элемента конструкции. Поэтому основная долговечность детали с трещиной определяется периодом ее зарождения и распространения до выхода на поверхность. В рассмотренных результатах эксперимента соотношение между первым и вторым пределом усталости составило 0,552.  [c.55]

Многолетний опыт эксплуатации авиационных ГТД показывает, что усталостные повреждения титановых дисков вплоть до разрушения различных ступеней компрессоров разных типов двигателей происходят в различных зонах дисков и при разной их наработке (табл. 9.1). Причины появления и распространения усталостных трещин в дисках различны и могут быть связаны с исчерпанием их циклической долговечности по критериям МНЦУ, МЦУ или МНЦУ/МЦУ в расчетных или нерасчетных условиях работы дисков и наличием или отсутствием факторов, снижающих усталостную прочность дисков и имеющих производственную или эксплуатационную природу. Последствия от разрушения дисков таковы, что двигатель утрачивает полностью свою работоспособность (рис. 9.1). Поэтому при отказе двигателя в полете из-за разрушения диска возникает предпосылка к летному происшествию, в том числе и из-за титанового пожара двигателя.  [c.464]

Противоположный результат характеризовал поведение алюминиевого сплава 2024-Т351 [5]. Предварительное деформирование было реализовано за счет однократного растяжения выше предела текучести материала и при циклическом нагружении в течение 1000 циклов. После этого осуществляли испытания на усталостную прочность при напряжении 138 МПа. Оказалось, что для обоих способов предварительного деформирования ма-  [c.764]

В связи с интенсивным развитием криогенной техники актуальными являются испытания усталостной прочности конструкционных материалов при высокочастотном циклическом нагружении в условиях низких те.мператур. В Институте проблем прочности АН УССР создана магнитострикционная установка резонансного типа, предназначенная для изучения выносливости материалов при симметричных циклах растяжения-сжатия и изгиба в одной плоскости с частотой около 3 кГц [46].  [c.248]


Смотреть страницы где упоминается термин Усталостная прочность (циклическая) : [c.186]    [c.127]    [c.154]    [c.403]    [c.16]    [c.255]    [c.154]    [c.157]    [c.161]    [c.165]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.66 ]



ПОИСК



Испытания циклическую прочность (усталостные)

Моделирование на ЭВМ механизмов разрушения слоистых композиционных материалов при циклическом нагружении и прогнозирование их усталостной прочности

Прочность усталостная

Усталостная

Усталостная прочность (циклическая) влияние абсолютных размеров

Усталостная прочность (циклическая) конструктивных факторов

Усталостная прочность (циклическая) концентрации напряжений

Усталостная прочность (циклическая) коррозионной среды

Усталостная прочность (циклическая) несимметрии цикла

Усталостная прочность (циклическая) поверхностного упрочнения

Усталостная прочность (циклическая) сопряженных деталей

Усталостная прочность (циклическая) технологических факторов

Усталостная прочность (циклическая) условий работы материала

Усталостная прочность (циклическая) формы кривой изменения напряжений

Усталостная прочность (циклическая) частоты смены циклов

Усталостная прочность, зависимость от гистерезиса в режиме циклического нагружения

Ч асть первая ХАРАКТЕРИСТИКИ УСТАЛОСТНОЙ ПРОЧНОСТИ i И МЕТОДЫ ИХ ОПРЕДЕЛЕНИЯ Общие сведения. Методы оценки поврежденности металла циклической нагрузкой

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте