Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усталостная прочность (циклическая) условий работы материала

Настоящая монография является одной из попыток среди такого рода работ подойти к проблеме разрушения, базируясь на системном подходе, лежащем на стыке механики деформируемого твердого тела, механики разрушения и физики прочности и пластичности. В книге изложены разработанные авторами физико-механические модели хрупкого, вязкого и усталостного разрушений, позволяющие анализировать повреждение материала при сложном нагружении в условиях объемного напряженного состояния. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Кроме того, в работе рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях.  [c.3]


Детали, подвергающиеся длительной повторно-переменной нагрузке, разрушаются при напряжениях значительно меньших предела прочности материала при статическом нагружении. Это имеет большое значение для современных многооборотных машин, детали которых работают в условиях циклических нагрузок при общем числе циклов, достигающем за весь период службы машины многих миллионов. Как показывает статистика, около 80% поломок и аварий, происходящих при эксплуатации машин, вызвано усталостными явлениями.-Поэтому проблема усталостной прочности является ключевой для повышения надежности и долговечности машин. -  [c.275]

Три знакопеременной нагрузке влияние сварочных напряжений на прочность конструкции зависит от ряда факторов. Они практически не влияют на циклическую прочность конструкции в том случае, если материал находится в вязком состоянии и если в изделии отсутствуют конструктивные и технологические концентраторы напряжений. Сварочные напряжения могут снижать циклическую прочность при наличии повышенной концентрации напряжений, особенно в конструкциях из материала с пониженными пластическими свойствами. В то же время усталостная прочность может быть повышена созданием в конструкциях при помощи различных технологических процессов благоприятных остаточных напряжений. При анализе условий работы конструкции со сварочными напряжениями необходимо также учитывать, что в наиболее распространенных сварных соединениях из малоуглеродистой и низколегированных перлитных сталей участки шва и прилегающей к нему зоны термического влияния, где действуют напряжения растяжения., являются более прочными.  [c.60]

Фретинг-эффект, Особое значение в усталостной прочности титановых сплавов имеет фретинг-эффект, или контактная коррозия, в местах сопряжения. Наличие контактного трения при циклическом нагружении у всех металлов приводит к заметному снижению усталостной прочности, особенно в коррозионных средах. Титановые сплавы в этом отношении мало отличаются от сталей, близких к ним по прочности [761. Возникающее контактное трение (в местах заделок, прессовых посадок, креплений и т. п.) резко снижает усталостную прочность, действуя подобно концентратору напряжений. Степень снижения усталостной прочности в основном зависит от сопряженного материала, вызывающего фретинг-эффект, удельного давления в месте сопряжения и окружающей среды. Удельное давление [761 оказывает сильное влияние только при его низких значениях. В прочных креплениях или плотных посадках при удельных давлениях более 3—5 кгс/мм усталостная прочность мало изменяется. Так, по данным работы [76], прессовая посадка втулки с удельным давлением 5 кгс/мм снижает усталостную прочность технически чистого титана с 32 до 11,2 кгс/мм . Дальнейшее увеличение удельного давления посадки до 20 кгс/мм снизило предел усталости до 10,3 кгс/мм . В среднем предел усталости при наличии фретинг-эффекта ((т /) у титановых сплавов на воздухе при контактировании с однородным сплавом составляет 20—40% от исходного предела усталости, т. е. (tI i = (0,2- -0,4)(Т 1. При контактировании с более мягкими материалами (медные, алюминиевые или магниевые сплавы) это соотношение повышается и достигает ali = 0,6(T i. Повышения значения до (O,5-hO,6)0 i можно добиться анодированием поверхности или покрытием пленкой полимеров, т. е. благодаря улучшению условий трения.  [c.154]


Важным методическим моментом расчета повреждений в форме деформационно-кинетического критерия малоцикловой прочности является вопрос о возможности использования известных корреляционных зависимостей характеристик сопротивления усталостному разрушению от статической и длительной пластичности материала. В исследовательских работах, связанных с обоснованием применимости критерия, необходимо получать прямые опытные данные путем постановки базовых экспериментов в соответствующем диапазоне условий (температурный режим, частота и скорость деформирования, предельные базовые числа циклов и общая продолжительность статических и циклических испытаний). При наличии  [c.53]

Сопоставляя усталостную прочность сплавов Ti—5А1—2,5Sn (типа ВТ5-1) и Ti—6А1—4V (типа ВТ6) в листах толщиной 4 мм и кованых прутках диаметром 12—18 мм авторы работы [119] приходят к выводу, что листовой материал, обладающий более измельченной структурой, имеет выше предел усталости, хотя и показывает большой разброс данных. Этот разброс можно объяснить травлением листов, что резко действует на усталостную прочность. Понижение усталостной прочности при огрублении макроструктуры было получено и для сплава АТЗ. В работе [73] сопоставлялись две характерные структуры теплопрочных сплавов ВТЗ-1 и ВТ18 мелкозернистая и пластинчатая. В условиях пульсирующего циклического растяжения при 20° С оказалась лучшей мелкозернистая структура при 450° С и асимметричном циклическом растяжении обе структуры стали равноценными при 600° С и асимметричном циклическом растяжении у сплава ВТ18 оказалась лучшей уже пластинчатая структура. Эти опыты показали на необходимость оценки влияния структуры конкретных условий испытания.  [c.147]

Рассмотрим вопросы прочности и особенности условий разрушения. В общем случае процесс длительного малоциклового нагружения сопровождается накоплением односторонних деформаций, вызываемых циклической анизотропией свойств материалов, асимметрией цикла нагружения (по напряжениям, длительностям выдер-л<ек) и т. п. Когда процесс накопления односторонних деформаций выражен, наблюдается так называемый квазистатический тип малоциклового разрушения с характеристиками пластичности,, соответствующими условиями статического (однократного) нагружения до разрыва. Как правило, в конструкциях за пределами упругости работает материал только в зонах максимальных напряжений. За счет стесненности пластических деформаций в большинстве случаев нагружения накопление односторонних деформации подавлено или отсутствует. Под действием циклических деформаций развиваются иоврех дения, приводящие к малоцикловому усталостному разрушению, когда в зонах максимальных циклических деформаций образуются макротрещины усталостного типа.  [c.95]


Смотреть страницы где упоминается термин Усталостная прочность (циклическая) условий работы материала : [c.154]    [c.113]    [c.313]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.66 ]



ПОИСК



Материалы Прочность

Прочность усталостная

Работа с материалами

Условие прочности

Условие работы

Условия усталостной прочности

Усталостная

Усталостная прочность (циклическая)

Усталостная прочность материала

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте