Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аустенит на свойства стали

В зависимости от скорости охлаждения с температур, лежащих выше линии SE, углерод частично или полностью выделяется из твердого раствора в виде карбидов. Этот процесс оказывает решающее влияние на свойства сталей. При быстром охлаждении (закалке) распад твердого раствора не успевает произойти, и аустепит фиксируется в пересыщенном и неустойчивом состоянии. Количество выпавших карбидов хрома, помимо скорости охлаждения, зависит и от количества углерода в стали. При его содержании меиее 0,02—0,03%, т, е. ниже предела его растворимости в аустените, весь углерод остается в твердом растворе.  [c.283]


Легирующие элементы взаимодействуют со сталью по-разному. Они могут растворяться в феррите или аустените, образовывать карбиды и интерметаллические соединения и входить в состав включений, не взаимодействуя с ферритом или аустенитом, а также с углеродом. В зависимости от того, как взаимодействует легирующий элемент с железом и углеродом, он по-разному влияет на свойства стали.  [c.49]

В закаленной конструкционной стали может присутствовать небольшое количество остаточного аустенита Его влияние на свойства стали после отпуска может быть двояким Если остаточный аустенит распадается при отпуске на феррит и карбид, то это вызовет охрупчивание стали Стабилизированный остаточный аустенит, не разлагающийся при отпуске, расположенный между пластинами мар  [c.168]

Влияние легирующих элементе на свойства стали заключается в основном в воздействии их на характер превращения переохлаждённого аустените и на состав карбидных или интерметаллидных фаз, образующихся в стали и выделяющихся в процессе распада мартенсита при отпуске.  [c.73]

Величина зерна аустенита влияет на свойства стали и ее поведение при термической обработке. Поскольку аустенит существует в обычной стали лишь при повышенных температурах, для выявления его зерна пользуются специальными методами термической обработки (цементация, окисление и т. д.). Получающаяся при этом сетка карбидов или сетка окислов сохраняется после охлаждения и характеризует величину зерна аустенита.  [c.88]

Влияние легирующих элементов на свойства стали. Легирование стали никелем повышает ее прокаливаемость этому же способствуют присадки марганца, молибдена, хрома, бора. Никель увеличивает также вязкость и пластичность стали, понижает температуру порога хладноломкости. Однако никель дорог, поэтому его вводят в сочетании с марганцем или хромом. Понижение порога хладноломкости достигается также присадкой хрома, молибдена, вольфрама, ванадия, титана, ниобия и циркония, которые образуют дисперсные труднорастворимые в аустените карбиды и препятствуют росту зерна аустенита. Рост зерна аустенита задерживается также присадкой алюминия, присутствующего в виде дисперсных оксидов. Молибден и вольфрам повышают также стойкость стали к отпуску. Кобальт (как и никель) полностью взаимно растворим с железом, повышает точку и способствует понижению количества остаточного аустенита в закаленной стали.  [c.112]


Следует отметить, что и при максимально высокой температуре закалки первичные карбиды не растворяются в аустените. Сталь Р18 отличается от Р9 только более высоким содержанием избыточных первичных карбидов при одинаковой температуре закалки насыщенность аустенита и, следовательно, красностойкость мартенсита будут одинаковыми. Вот почему, несмотря на такое большое различие в составе, режущие свойства стали Р9 и Р18 практически одинаковы, так как мартенсит у них получается одного состава.  [c.425]

По составу нержавеющие стали делятся на хромистые и хромоникелевые. Кроме основных элементов (углерода, хрома, никеля) нержавеющие стали могут быть дополнительно легированы молибденом, титаном, ниобием, медью, кремнием, которые вводят для повышения коррозионной стойкости, механических и технологических свойств стали. Нержавеющие стали бывают нескольких структурных классов ферритного, ферритно-мартенситного, мартенситного, аустенит-  [c.31]

Изучение эрозионной стойкости сталей /170/ показало, что определяющими являются теплофизические характеристики металла, поэтому выбор легирующих элементов или их комбинации необходимо осуществлять с учетом этих свойств, а также исходя из условий абразивной и ударной прочности металлов. Легирующие элементы преимущественно растворяются в основных фазах железоуглеродистых сплавов (феррит, аустенит, цементит), образуя сложные карбиды и другие соединения. Улучшение технических свойств сталей (прочность, износостойкость и т.д.) достигается также с помощью термической обработки, в результате которой происходит перераспределение химических элементов и соединений как внутри кристаллических зерен, так и между ними, что оказывает существенное влияние на энергию межатомных связей. Углерод является одним из основных легирующих элементов, и при увеличении содержания углерода эрозия возрастает по линейному закону, что может быть объяснено уменьшением  [c.173]

Толстостенные паропроводные трубы часто гнут в горячем состоянии. При нагреве под гибку труб из перлитных сталей либо один конец трубы, либо оба остаются холодными, а участок, который должен быть согнут, нагревают до температуры выше температуры перехода его структуры ib аустенит. Затем трубу гнут и охлаждают на воздухе. Через некоторое время ее подвергают высокому отпуску. Термомеханический цикл воздействия на металл трубы при горячей гибке может сказаться на свойствах металла гиба, согнутого с нагревом.  [c.388]

Диаграммы строят на основе экспериментальных данных. Образцы сталей, нагретые до аустенитного состояния, быстро переносят в ванну с жидкой средой, имеющей температуру ниже равновесной температуры превращения, и выдерживают до завершения превращения. При этом фиксируют изменение какого-либо свойства, чтобы определить время начала и конца превращения. При температурах, меньших точки Кюри, следят за изменением магнитных свойств стали, так как они изменяются наиболее резко (аустенит парамагнитен, а продукты превращения аустенита ферромагнитны).  [c.166]

Повышение прокаливаемости сталей сопровождается улучшением их закаливаемости. Закаливаемость — это такое свойство сталей, когда в результате закалки их поверхность становится мартенситной и приобретает высокую твердость. На первый взгляд кажется, что закаливаемость зависит только от содержания углерода в стали. Однако более тщательные исследования показывают, что важную роль в этом процессе, кроме содержания углерода, играют растворенные в аустените другие легирующие компоненты, а также применяемые охлаждающие среды. Имеются, например, и такие инструментальные стали, которые получают наибольшую твердость только в результате весьма эффективного водяного охлаждения (нелегированные стали), другие же (например, высоколегированные) даже при охлаждении на воздухе, т. е. закаливаются также под воздействием более мягкой охлаждающей среды.  [c.74]

Структура закаленной стали состоит ие только из мартенсита, но и остаточного аустенита. Заметное количество остаточного аустенита послЬ закалки получается не только в легированной, но и в простой углеродистой стали, содержащей всего 0,2% углерода, Остаточный аустенит оказывает в основном отрицательное влияние на свойства стали  [c.13]


В закаленной и низкоотпущенной, а также 8 изотермически закаленной стали в качестве одной из фаз содержится неравновесный, так называемый остаточный аустенит. Влияние остаточного аустенита на свойства стали зависит не только от его количества, но и от степени дисперсности. В общем случае он понижает твердость, магнитное насыщение, магнитную проницаемость и остаточную индукцию стали и повышает пластичность и коэрцитивную силу.  [c.564]

Сталь, нагретая выше Лсд, превращается полностью в аустенит. При последующем охлаждении происходит перекристаллизация и устраняются все дефекты в структуре стали, которые были до нагрева текстурованность, вызванная влиянием прокатки, неравномерность зерна, связанная с неправильной предварительной обработкой стали, крупнозернистость, обусловленная перегревом стали, и т. п. С этой точки зрения обжиг эмали выше точки Лсд должен оказывать благоприятное влияние на свойства стали.  [c.57]

Микроструктура образцов стали 110Г13Л с ванадием в литом состоянии представляет собой аустенит с мелкодисперсными карбидами, причем карбидов в ней значительно больше, чем в стали без ванадия. Карбиды располагаются в основном внутри зерен аустенита и отличаются высокой дисперсностью. Уменьшение размеров зерна отмечено при содержании 0,3—0,4% ванадия, что положительно влияет на механические свойства стали и абразивный износ.  [c.240]

Легирование снижает критическую температуру хрупкости структур сорбита и троостита. Отрицательное влияние на свойства низко- и среднеотпущенной стали оказывают структурно-свободный феррит и остаточный аустенит.  [c.16]

Сталь Х24Н12С2Л применяют для изготовления деталей печного оборудования в металлургии и машиностроении. По окалиностойкости сталь допускает примеиение до 900° С, но при низких значениях напряжений. По структуре она относится к группе аустениго-ферритных с включениями карбидов. Наилучшее сочетание свойств сталь получает после гомогенизирующей обработки — закалки на аустенит.  [c.207]

Стремление к улучшению экономических показателей электростанций, сжигающих мазут, путем повышения температуры перегрева пара привело к созданию новых марок жаропрочных хромомарганцевых аустенитных сталей с небольшим содержанием никеля. ЦНИИТмаш разработана сталь типа 0Х13Г12Н2АС2 и ИМЕТ АН СССР — сталь типа 0Х12Г14Н4ЮМ [Л. 36]. Эти стали имеют показатели жаропрочности на уровне аустенит-ной хромоникелевой стали Х18Н12Т и превосходят ее в 1,5—2,0 раза по коррозионной стойкости в продуктах сгорания мазута. Стали сохраняют высокие пластические свойства при длительном эксплуатационном опробовании, а также при испытании на длительную проч-  [c.109]

Скорость охлаждения при термической обработке зависит от требуемых конечной структуры и свойств стали. Ниже точки А, (723" С) аустенит неустойчив. Если степень переохлаждения аустенита невелика, он распадается на ферритно-цемеититиую сыесь.  [c.121]

Деформация переохлажденного аустенита вызывает наклеп его, дробление микро-и субструктуры, измельчение блоков, образование дефектов кристаллической рещетки (дислокаций) таким образом, в аустените создается новая структурная основа для образования мартенсита при последующем охлаждении. В результате такой обработки достигается значительное повышение прочностных и пластических свойств стали, на- Рис. Щ. Схема низкотемпера-много превосходящих свойства, получаемые турной термомеханической об-путем обычной закалки без деформации ау- работки стали  [c.56]

Если сталь легирована элементами, обладающими большим сродством к кислороду, чем железо, эти элементы предохраняют железо, являющееся основой стали, от окисления. Такими элементами является хром, алюминий и некоторые другие металлы. Пленка этих окислов обладает защитными свойствами и обеспечивает жаростойкость стали в том случае, если плотно покрывает всю поверхность детали и прочно соединена с основным металлом детали [80, 143, 158]. Коэффициент линейного расширения пленки должен быть близок к коэффициенту линейного расширения той стали, из которой изготовлена деталь. Наилучшую по свойствам пленку дают окислы хрома. В качестве добавки в нержавеющие стали вводятся титан и ниобий, препятствующие обеднению хромом границ зерен и тем самым появлению у нержавеющей стали склонности к интеркристаллитной коррозии. Так, например, широко распространенная нержавеющая аустенит-ная сталь 1Х18Н9Т до введения в ее состав титана была подвергнута интеркристаллитной коррозии, особенно в сварных соединениях.  [c.25]

Установлена зависимость остаточных сжимающих напряжений стали 40Х от сил деформирования при ВТМПО. Максимальные напряжения 500 МПа соответствуют оптимальной силе 550 Н, этим же условиям обработки соответствует максимальная контактная прочность. Следовательно, сжимающие остаточные напряжения в поверхностном слое оказывают благоприятное влияние на различные виды разрушающих нагрузок. Увеличивается остаточный аустенит при обработке стали У12 с деформацией 25. ..30%, что объясняется торможением роста мартенситных игл. Однако фрагментированный остаточный аустенит после ВТМПО существенно отличается по своим свойствам от аустенита, образованного обычной закалкой [11].  [c.46]

Обычно изучают изотермическое превращение аусте-нита (нроисходящее при выдержке при постоянной температуре) для эвтектоидной стали. Влияние температуры на скорость и характер превращения представляют в виде диаграммы изотермического превращения аустени-та (рис. 4.2). Диаграмма строится в координатах температура — логарифм времени. Выше температуры 727°С на диаграмме находится область устойчивого аустенита. Ниже этой температуры аустенит является неустойчивым и превращается в другие структуры. Первая С-образ-ная кривая на диаграмме соответствует началу превращения аустенита, а вторая — его завершению. При небольшом переохлаждении — приблизительно до 550°С происходит упомянутое выше диффузионное перлитное превращение. В зависимости от степени переохлаждения образуются структуры, называемые перлит, сорбит и тростит. Это структуры одного типа — механические смеси феррита и цементита, имеющие пластинчатое строение. Отличаются они лишь степенью дисперсности, т.е. толщиной пластинок феррита и цементита. Наиболее крупнодисперсная структура — перлит, наиболее мелкодисперсная — тростит. По мере увеличения степени дисперсности структур изменяются и механические свойства стали—возрастают твердость и прочность и уменьшаются пластичность и вязкость. Твердость перлита составляет 180-250 НВ, сорбита 250-350 НВ и тростита 350-450 НВ. В отличие от перлита, сорбит и тростит могут содержать углерода больше или меньше 0,8 %.  [c.115]


Присадка кремния к хромоникелевым аустенитным сталям до 2—3% сравнительно мало изменяет механические и другие свойства стали, особенно после закалки ее на аустенит [234, 235 J. Более высокое содержание кремния сильно влияет на механические свойства стали, повышая ее прочность, сообш,ая стали двухфазность и большую склонность к сигматизации.  [c.284]

Влияние азота на свойства и фазовый состав хромоникельмо-либденовой стали типа Г6-25-6 (ЭИ395) изучалось В. И. Просвириным с сотрудниками [276]. Установлено, что азот в закаленной на аустенит стали находится с -твердом растворе, а после старения выделяется в виде вторичных у - и о(-фаз. Последняя представляет собой карбонитридную фазу с гранецентрированной решеткой и меняющимися параметрами решетки в зависимости от термической обработки. Фаза % может содержать хром, молибден, никель, железо и углерод и сун ествует при 700—1000° С только в присутствии азота [277].  [c.327]

По механическим свойствам хромоиикельтитанистые стали близки к свойствам стали 18-8 они сочетают умеренную прочность (0(, = 56 кГ/мм ) при комнатной температуре с достаточно высокой пластичностью (S = 50%) (см. табл. 120). Они обладают несколько меньшей способностью к наклепу при холодной деформации, чем сталь типа 18-8. Углерод оказывает сравнительно незначительное влияние на механические свойства закаленной на аустенит стали  [c.331]

В работе [834] установлено, что хромомарганцевоникелевая сталь типа 19-5-6 с азотом после закалки на аустенит обладает высокой прочностью и пластичностью при 20 и —196° С. Наличие в структуре до 30% б-феррита не оказывает заметного влияния на механические свойства стали при—196° С. Однако эта сталь склонна к охрупчиванию после нагрева при температурах 500— 800° С, что зависит от содержания углерода и связано с образованием карбидов МегзСб- Сталь с 0,01% С не охрупчивается при отпуске.  [c.479]

Сталь марки 0Х23Н28МЗДЗТ имеет более стабильный аустенит и при кратковременном нагреве при 500—900° С в течение 2— 5 мин, и охлаждения в воде склонности к межкристаллитной коррозии не приобретает. Сварные образцы в зоне термического влияния межкристаллитной корррозин не имели. Испытания этих сталей на межкристаллитную коррозию проводили по методу В ГОСТ 6032—58, методика разобрана в работе [344]. В табл. 196 и 197 приведены механические свойства сталей марки 606  [c.606]

При оптимальных режимах термической обработки ста ли имеют невысокую твердость, прочность, теплостойкость и удовлетворительную вязкость Вследствие высокой сте пени легирования стали обладают высокой прокаливав мостью и стойкостью против перегрева, в связи с чем температура аустенитизации этих сталей довольно высока (выше 1050 С), что обеспечивает достаточную полноту растворения карбидов в аустените и образование высоко легированного мартенсита На рис 228 показано влияние температуры отпуска на механические свойства стали 11Х4В2С2ФЗМ После оптимального отпуска (530 °С) сталь имеет высокий комплекс механических свойств Не достатком сталей данного типа является образование круп ных избыточных карбидов при отжиге заготовок, что тре бует применения больших деформаций для раздробления крупных карбидных фаз  [c.389]

На мартенситное превращение в стали большое влияние оказывает ее химический состав. Оптимальным сочетанием прочностных и пластических характеристик обладает метастабильная аустенит-ная сталь 03Х15Н9АГ4. Массовая доля (%) ее основных элементов С < 0,03 Сг = 14—16 Ni = 8-10 Мп = 4-6 N = 0,2-0,3. Механические свойства этой стали приведены в табл. 13.17.  [c.616]

Для выполнения сравнительно медленного нагрева необходимы небольшие удельные мощности в пределах 0,05—0,2 кВт/см , при этом время нагрева обычно лежит в пределах 20—100 с. При таких режимах аустенитизации имеется дост.а-точное время для того, чтобы при нагреве доэвтектоидных и заэвтектоидных сталей в аустените в должной мере успела пройти диффузия углерода и легирующих элементов и была достигнута необходимая их концентрация в твердом растворе. При скорйстных режимах нагрева, применяемых при поверхностной закалке с поверхностного нагрева, это удается не всегда, вследствие чего наблюдается неравномерное строение мартенсита, отрицательно сказывающееся на свойствах поверхностно-закаленных деталей. Наиболее стабильно и целесообразно глубинный иидук-циониый нагрев может быть осуществлен с программным его регулированием (см. етр. 250).  [c.268]

Карбидные фазы в инструмеитальиых сталях. По влиянию на структуру и свойства различают карбиды, растворимые в аустените и нерастворимые, или избыточные. К растворимым относятся карбиды, находящиеся в перлите и переходящие в твердый раствор при превращении П -> А, и вторичные карбиды, особенно цементитного типа, а также типа М,Сз, М С и МгзСд, растворяющиеся в большей или меньшей степени при более высоких температурах закалки. Влияние растворения подобных карбидов в аустените при нагреве на поведение стали при закалке возрастает с ростом легированности сталей, содержащих небольшое количество углерода в эвтектоиде.  [c.371]

Остаточный аустеиит инструментальных сталей. Его влияние на свойства. Остаточный аустенит фиксируется в структуре закаленных сталей, содержащих более 0,4—0,5% С. Количество остаточного аустенита зависит от его состава, получаемого при нагреве до температуры закалки, условий охлаждения и в меньшей степени от величины зерна. Состав остаточного аустенита определяет его устойчивость при последующем отпуске. Он почти полностью превращается в результате нагрева при 200—350° С нетеплостойких углеродистых н низколегированных сталей и при 500—580° С теплостойких штамповых н быстрорежущих сталей, У полутеплостойких сталей с 6—18% Сг он устойчив до 450—500° С, вследствие чего практически полностью сохраняется при обработке на первичную твердость. Точно также он почти полностью сохраняется в структуре нетеплостойких многих полутеплостойких сталей после отпуска на высокую твердость и может значительно влиять на их основные свойства и почти не сохраняется в теплостойких и полутеплостойких сталях, обрабатываемых на вторичную твердость. Количество остаточного аустенита, присутствующего в инструментальных сталях различных классов после закалки, приведено ниже.  [c.381]

Высоколегированный аустенит очень стабилен главным образом в интервале температур перлитных превращений (600—500° С). В интервале температур бейнитных превращений устойчивость аустени-та намногр меньше. Это хорошо видно на примере стали марки W3, содержащей 2,5% Сг и 4,5% W, на диаграммах изотермических (рис. 211, а) и непрерывных (рис. 211,6) превращений. Количество бейнита и температура начала превращения возрастают с замедлением скорости охлаждения. В структуре стали возникает все больше верхнего бейнита. Для образования чисто мартенситной структуры необходимое время критического охлаждения (f ) составляет всего 5— 20 с, 5оо/ только 34 с, однако п=23 000 с. Поэтому структура таких сталей—в основном инструментов больших размеров—при закалке мол ет становиться вместо мартенситной бейнитной и даже могут встречаться эвтектоидные выделения. К сожалению, при обычных условиях охлаждения перлитное и бейнитное превращения начинаются позже выделения значительного количества карбидов, которые обычно образуются как раз по границам зерен. Вследствие этого снижается содержание легирукзщих компонентов в твердом растворе (см. табл. 114) и резко ухудшаются вязкие свойства стали.  [c.266]

Реализация этой проблемы, помимо оптимизации состава стали и повышения ее чистоты по содержанию примесей, требует проведения работ по разработке и внедрению новых технологических схем упрочнения, которые направлены на повышение всего комплекса механических свойств, определяющих сопротивление пластической деформации и сопротивление разрушению в разных интервалах температур и условий нагружения. В этом последнем направлении наиболее перспективным является использование термомеханической обработки, сочетающей в едином металлургическом цикле обработки пластическую деформацию и фазовые превращения, что оказывает наиболее эффективное воздействие на структурное и субструктурное состояние стали и, соответственно, на указанный выше комплекс свойств. Варианты ТМО, сочетающие горячую или теплую деформацию стали в аустенитном состоянии с последующей закалкой на мартенсит (ВТМО или ВТМУ) или такие схемы ТМО, в которых используется деформированный и деформируемый в изотермических или в близких к ним условиях аустенит, позволяют существенно улучшить свойства сталей. При осуществлении процесса термомеханической обработки в условиях существующих цехов на металлургических предприятиях особые трудности возникают в случае практической реализации схем, связанных с изотермическими процессами, так как для этого требуется регламентация условий нагрева, промежуточного охлаждения, условий деформации и окончательного охлаждения. Все, строго говоря, требует привлечения математического моделирования с использованием метода математических обратных задач, что позволяет компьютеризировать эти процессы ТМО.  [c.448]


Авторами работы [25] изучен процесс ВТЦО доэвтектоидной стали, основанный на многократных процессах фазовой перекристаллизации аустенит — феррит при термоциклировании в межкритическом интервале температур Ас — Аа. ТЦО проводили для доэвтектоидных сталей 20, 35, 40, Ст5. Исследовано влияние температурных режимов термоциклиг рования, длительности выдержек и числа циклов на изменение структуры и свойств стали. Термоциклирование осуществляли переносом из печи в печь с температурой, соответствующей верхней и нижней температурам ТЦО. Нижняя температура термоциклирования Лс1—5- -Ь30°С, а верхняя—Лсз —5-Ь 30 °С. Длительность выдержек в обеих печах 5—30 мин, число циклов преимущественно от 3 до 10. Проведена контрольная ТО, соответствующая нормализации, неполному отжигу и обработке, отвечающей выполнению одного цикла. Результаты исследований свидетельствуют о существенном измельчении структурных составляющих (феррита и перлита) и более равномерном нх распределении.  [c.93]


Смотреть страницы где упоминается термин Аустенит на свойства стали : [c.94]    [c.69]    [c.232]    [c.13]    [c.215]    [c.175]    [c.362]    [c.126]    [c.33]    [c.94]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.564 ]



ПОИСК



Аустенит

Влияние величины зерна аустенита на свойства стали

Стали аустенита



© 2025 Mash-xxl.info Реклама на сайте