Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Работа гомогенного

По имеющимся сведениям, на некоторых зарубежных предприятиях межремонтный период работы гомогенно освинцованного  [c.212]

Вопрос о том, что представляют собой зародыши мартенсита, наиболее трудный во всей проблеме мартенситных превращений. Гипотеза гомогенного зарождения, связанного с флуктуационным образованием зародыша критического размера, большинством исследователей отвергается, так как из-за высокой энергии упругих искажений работа гомогенного образования критического зародыша столь велика, что вероятность его флуктуационного появления ничтожна.  [c.227]


Подстановка критического размера в уравнение (1.71) даст нам величину работы гомогенного образования критического зародыша  [c.96]

Предварительный подогрев жидкого топлива, интенсифицирующий испарение, позволяет получить в вихревой камере гомогенный состав, существенно облегчающий запуск и высокую устойчивость работы при сравнительно высокой полноте сгорания топлива Т1 = 0,99(9). Техническая характеристика горелочного устройства окислитель — сжатый воздух (давление — 0,1-0,6 МПа, расход 10,0 < С < 20 г/с), топливо (природный газ, керосин, дизельное топливо, отработка), расход G= 2- -3 г/с. Система подачи топлива — вытеснительная по магистрали, соединяющей горелку с вытеснительным бачком. Запуск горелки осуществляется открытым факелом через специальные продувочные окна.  [c.351]

При использовании сверхзвукового сопла становится возможным экспериментальное исследование гомогенного образования зародышей и конденсации, так как по сравнению с другими методами мгновенного расширения в этом случае достигается максимальная скорость релаксации. Измерение статического давления по длине сопла позволяет судить о количестве тепла, выделяемого при конденсации [437]. В работе [174], кроме того, интерферометрическим методом измерялась плотность газа.  [c.331]

В работах [877, 8791 был исследован непрерывный переход от режима плотного слоя, псевдоожиженного слоя к движущемуся потоку. В работе [531] изучается перенос массы и количества движения в неподвижном и псевдоожиженном слоях и выявляется тенденция перехода от псевдоожиженного состояния к переносу частиц, как показано на фиг. 9.8, где приведено соотношение между скоростью газа, объемным газосодержанием и переносом частиц. Выявлено несколько регулярных режимов, при которых существует устойчивый гомогенный слой эти режимы кратко описаны в работе [272]. В работе [527] выделены три этапа процесса псевдоожижения, показанные на фиг. 9.9. В области А газ с низкой скоростью просачивается через слой, не возбуждая отдельных частиц, газовая фаза представляет собой вязкий поток падение давления на единицу длины увеличивается линейно с увеличением скорости, однако меньше удельного веса частиц.  [c.400]

Помимо химических реакций необратимыми могут быть и любые другие процессы, однако гомогенные химические реакции являются особенностью, так как их протекание внутри системы необязательно сопровождается нарушением ее однородности. В случаях иных необратимых процессов в системе, вызванных теплопередачей, работой или массообменом, как легко заметить, должны всегда существовать градиенты хотя бы одной из термодинамических сил Т, X или ц, т. е. система должна быть неоднородной. В (7.18) такие градиенты не представлены в это уравнение входят термодинамические силы, единые для всей системы, т. е. очевидно, что за основу принята модель, согласно которой необратимые процессы е нарушают гомогенности системы и в каждый момент времени она находится в состоянии, однозначно характеризующимся переменными S, v, п. Поэтому было бы неправильно полагать, что применимость ура(внения (7.18) ограничивается обратимыми процессами его можно использовать при любых процессах внутри системы. Более того, оно автоматически учитывает и некоторые необратимые изменения состояния, происходящие за счет процессов  [c.71]


Возможность расчета с помощью фундаментального уравнения всех термодинамических свойств гомогенной системы заложена в самом способе его вывода. Действительно, все упоминавшиеся ранее термодинамические силы являются частными производными функции и(5, V, п) по сопряженным с ними независимым переменным — термодинамическим координатам. Если ввести общее обозначение для термодинамических сил Z=(7 , —X, 111) и для термодинамических координат q=(5, v, n), то правая часть (9.1) приобретает вид, напоминающий выражение для работы (5.7) или (5.13)  [c.76]

Таким образом, чтобы объяснить экспериментальные факты, необходимо допустить, что электроны проводимости тяжелых щелочных металлов не являются полностью свободными, так как экранирование ионов в этих металлах неполное. Такое предположение можно было бы проверить непосредственно, если бы удалось ввести в щелочные металлы атомы металлов с другой валентностью (наиример, кальций или стронций) с образованием гомогенного твердого раствора. Действительно, сопротивление, вызванное введением инородных атомов с разностью валентностей Z, при концентрации х атомных долей должно быть равно (см. работы Мотта и Джонса [37], стр. 294)  [c.197]

Работу образования W критического зародыша при образовании новой фазы (уравнения Гиббса), Дж. При гомогенном образовании  [c.331]

Конкретный вид функции и зависит от сорта компонента и принятой схемы гомогенных и гетерогенных реакций. В данной работе считается, что газовой поток состоит из пяти компонентов (СО, О2, СО2, N2, Н2О в обозначениях величин им будут соответствовать индексы 1,2, 3, 4, 5), и используются кинетические схемы Л. А. Вулиса [461  [c.413]

В работе [28] определена р в системе Fe — S в области гомогенных расплавов в интервале температур до 1500° С. Температурная и концентрационная зависимость р описывается полиномом  [c.35]

Во многих случаях для расчетов местных сопротивлений удовлетворительно работает гомогенная модель. Так, опыты И. О. Замозия поклзали, что такая модель годится для истечения воздуховодяной смеси через острые шайбы.  [c.169]

Образование докриттеского зародыша, из которого затем вырастает зародыш, приводит к увеличению площади поверхности раздела твердой и жидкой фаз. Поэтому при рассмотрении возникновения зародыша необходимо учитывать возрастание свободной энергии границы раздела фаз. В результате изменение свободной энергии Гиббса АО (или работа гомогенного зародышеобразования), связанное с возникновением докритического зародыша при Т < Те, является разностью между свободной энергией поверхности раздела 4лг СТ8ь, необходимой для образования новой границы между твердой и жидкой фазами, и изменением объемной свободной энергии двух фаз (4 / 3)т1г АС Для сферической частицы радиуса г это изменение имеет вид  [c.95]

Для образования начального очага воспламенения необходим мая тепловая энергия обеспечивается запальными приспособлениями, а при развитии процесса сгорания свежие порции топлива получают необходимую тецлоту от образующихся продуктов сгорания. Для этого в камере сгорания должна быть зона обратных токов, наличие которой приводит к подсасыванйю раскаленных продуктов сгорания к движущейся топливовоздушной струе. Подсосанный горячий газ способствует непрерывному поджиганию свежих порций топливовоздушной смеси. Высокая степень циркуляции в зоне обратных токов (она захватывает зоны смесеобразования и сгорания) создает условия, приближающиеся к условиям работы гомогенного реактора. В этом случае выход токсичных компонентов — несгоревших углеводородов СссНу и окиси углерода СО сохраняется на постоянно низком равновесном уровне до тех пор, пока коэффициент избытка воздуха а не достигнет предела обеднения смеси. В этом случае выделяющейся при сгорании теплоты недостаточно для интенсивного подогрева обедненной топливовоздушной смеси, что приводит к снижению температуры реакции окисления, скорость которой замедляется, и вследствие ограниченного времени пребывания топлива в Камере процесс сгорания вообще может не закончиться в ее пределах. Это привходит к химическому недожогу в виде СО и механическому В- виде СжН, .  [c.108]


В бензиновых двигателях интенсивное сажеобразование возможно только при работе на иереобогащенной смеси (а < 0,7), что сви-детел[>ствует о неисправности системы питания. Нормальное сгорание гомогенных топливовоздушных смесей происходит при а > > 0,82 -н 0,85, т. е. значительно более высоких, чем предел образования сажи.  [c.11]

Превращения при распаде твердого раствора протекают с образованием фаз, имеющих состав, отличный от исходной матричной фазы. Поэтому для гомогеЕиюго возникновения зародыша новой фазы критического размера необходимо наличие флуктуаций энергии и концентрации. Чем больше степень переохлаждения, тем меньше критический размер зародыша и требуемые для его образования флуктуации энергии и концентрации. Чаще зародыши образуются в дефектных местах кристаллической решетки, на границах зерен, в местах сконления дислокаций, на включениях примесей и т. д. (гетерогенное зарождение). Это объясняется уменьшением работы образования критического зародыша (по сравнению с гомогенным зарождением) и его размеров.  [c.103]

В работе Трусделла [40], так же как и в целом ряде последовавших за ней работ [30, 32, 33, 37], нет четкого разделения смесей на гомогенные и гетерогенные и их различного описания. Все эти работы посвящены получению балансовых уравнений многоскоростного континуума типа (1.2.5), а также рассмотрению основных термодинамических аспектов. При этом в качестве термодинамических параметров используются средние плотности составляющих Pi, что характерно лишь для гомогенных, а не гетерогенных смесей. Это обстоятельство и отмечено в заметке автора 116], посвященной обсуждению статьи Грина и Нахди [33], в ко-  [c.27]

В работе [899] сделан вывод, что псевдоожиженные слои, образованные жидкостью и твердыми частицами, находятся в гомогенном состоянии во всем диапазоне состояний от плотной фазы (обычный случай неплотной среднемассовой упаковки твердых частиц) до дисперсии или разбав.ленной фазы (плотность от О до 10% среднемассовой плотности). Однако в системах, состоящих из газа и мелких твердых каталитических материалов гомогенные смеси можно получить только в этих двух предельных случаях. Между ними преобладают негомогенные условия. Они характеризуются наличием пузырей газа в псевдоожиженной массе твердых частиц. Дальнейшее уменьшение плотности слоя приводит к образованию прослоек газа и неплотно упакованных твердых частиц. Ценц дал полный анализ всего диапазона состояний от плотного слоя до движущегося.  [c.410]

Способность мембраны передавать или не передавать энергию и вещества из одной части системы в другую формулируется на языке ее качественных характеристик. Различают мембраны подвижные и неподвижные, гибкие и жесткие, проницаемые для конкретных частиц и непроницаемые. Подвижные мембраны способны изменять свое положение в пространстве, а гибкие — изменять свою площадь и форму. В первом случае изменяются объемы разделяемых частей системы, а во втором — в дополнение к этому может производиться работа изменения величины поверхности мембраны. Если жесткая неподвижная мембрана разделяет два раствора и проницаема ие для всех, а лишь для некоторых из нейтральных компонентов (полупроницаемая мембрана), то такую систему называют осмотической, если же при этом мембрана способна пропускать через себя ионы, то говорят о равновесии Доннана. При подвижных мембранах с ионной проводимостью имеют дело с обычными электрохимическими равновесиями. Частным случаем мембранных равновесий можно считать и гетерогенные равновесия между различными фазами вещества. Роль мембраны в этом случае играет естественная граница раздела соприкасающихся фаз ( поверхностная фаза ) или другая фаза, в равновесии с которой находятся гомогенные части системы. Например, при так называемых изопьестических (изобарических) равновесиях ею может сл) жить общая паровая фаза над жидкими растворами с различающимися концентрациями веществ.  [c.129]

Пересчитаем плотность воды на 1 г, см и примем объемное содержание стали OJ т=0,7. Примем также, что экран состоит из 23,3 см стали и 10 см воды. При этом толщина экрана равна / = 33,3 см вместо 35 см, что соответствует действительной плотности воды 0,857 см . Таким образом, в расчет защиты вводится условная защитная композиция из смеси стали и воды. Сталь распределяем в воде несколькими слоями толщиной меньше длины пробега быстрых нейтронов и у-квантов. Это позволяет рассматривать ослабление потоков излучений в экране как в гомогенной смеси, для которой применимы экспоненциальные законы ослабления. После 20 см выбранной защитной среды спектр нейтронов становится близким к равновесному. Результаты расчета, приведенных в работе [1], воспроизведены в табл. 1.7.  [c.303]

Конвекция и экзотермическая химическая реакция. Известны случаи возникновения естественной конвекции в химических активных средах, возникающей в результате протекания гомогенных химических реакций. В [67, 68] причиной возникновения конвекции служила экзотермическая реакция псевдонулевого порядка. В [69] рассмотрена концентрационная конвекция, вызванная гомогенной химической реакцией произвольного порядка. К этим работам близки работы [70, 71] по численному моделированию концентрационной конвекции при выращивании кристаллов.  [c.44]

Следует сказать, что в классической гомогенной модели (уравнения (7.32), (7.33)) происходит взаимная компенсация ошибок, позволяющая применять эти уравнения и при таких паросодер-жаниях, при которых действительная структура потока далеко не гомогенная. Так, в дисперсно-кольцевом потоке из-за большого скольжения фаз (3 > ф, Рр < Рф, причем различия этих параметров достаточно велики и нарастают с ростом паросодержания. С другой стороны, скорость жидкости в пленке заметно ниже, чем используемая в гомогенной модели скорость смеси. По этой причине во многих экспериментальных работах, прежде всего для области высоких приведенных давлений, используют гомогенную модель для сопоставления с опытными данными во всем диапазоне изменения массового расходного паросодержания (О < х < 1). При этом, чтобы обес-  [c.325]


С повышением требований к выключательным устройствам (уменьшение габаритных размеров приборов, повышение долговечности их работы) резко возросли требования к материалам для контактов. Например, контакторы магнитных пускателей должны обладать высокой стойкостью против сваривания при включении больших токов И обгорания, легким гашением дуги — и все это при постоянном низком контактном сопротивлении. Эти требования выполняются при использовании материалов типа Ag— dO. Сплав Ag— dO получают путем внутреннего окисления выплавленного гомогенного сплава Ag— d. При  [c.248]

Механические свойства гетерогенных систем подробно исследованы в работах [19, 95,138—147]. Улучщение прочностных характеристик, прежде всего предела текучести, этих систем по сравнению с гомогенными материалами обусловлено наличием структурных неоднородностей, создающих дополнительное сопротивление движению дислокаций. Согласно работе [145], эти неоднородности можно классифицировать следующим образом 1) локальные изменения, вызванные флуктуациями состава и приводящие к образованию метастабильных групп-кластеров, которые могут длительно существовать при низких температурах в силу замедленных процессов диффузии 2) мета-стабильные зоны типа зон Гинье — Престона (предвыделения) 3) выделения второй фазы, имеющие когерентную или некогерентную связь с матрицей, а также включения второй фазы 4) смесь двух фаз, представляющая собой поликристалл, состав отдельных зон которого может быть различным (следуя Гуарду [139], часто применяется термин конгломератная структура ).  [c.71]

Чтобы решить две последние задачи необходимо изменить свойства Дисилицида. Весьма полезным для этой цели может оказаться изучение влияния легирующих элементов на свойства WSi2. Некоторые исследователи изучали влияние легирующих добавок В, Сг, Ре, А1 на жаростойкость силицидов. Замена кремния бором приводит к образованию устойчивых тройных фаз, но существенного улучшения коррозионных свойств авторы работ [13, 14] не наблюдали. Системы Мо—81—А1 и W—81—А1 описаны в работах [15, 16]. В обеих системах обнаружены тройные соединения Ме (81, А1)2, имеющие гексагональную структуру (С 40). Причем в системе У—81—А1 тройная фаза имеет значительную область гомогенности. При содержаниях А1 меньших, чем 13 ат. %, перестройки тетрагональной решетки не происходит, и алюминий находится в решетке дисилицида в виде твердого раствора замещения.  [c.297]

В работе [25] сдвиг стационарного потенциала армко-железа в 0,1-н. растворе H2SO4 в сторону положительных значений на несколько десятых долей милливольта при растяжении в упругой области интерпретировался как следствие увеличения скорости реакции выделения водорода при неизменности скорости анодной реакции ионизации металла. При этом предполагалось, что обе эти реакции протекают совмещенно на всей площади образца (гомогенная поверхность). Однако в электролите такой сравнительно небольшой агрессивности по отношению к железу вероятно пространственное разделение (хотя бы частичное) катодных и анодных реакций, являющееся неустойчивым происходит увеличение площади катодной реакции при деформации металла вследствие стремления анодного процесса к локализации (см. гл. IV).  [c.34]

Найдено, что б-фаза на основе соединения TiRu со структурой типа s l кристаллизуется из расплава с максимумом на кривой кристаллизации при 2120° С. Область ее гомогенности при 1575° С лежит между концентрациями рутения 43 и 51 ат.%, с понижением температуры несколько сужается. С твердым раствором на основе рутения б-фаза образует эвтектику при 1855° С, что почти на 100° выше найденной в работе [26]. Сплавы, содержащие 70—80 ат.% Ru, которые выдерживали на установке для определения температур солидуса при 1820° С, признаков плавления не обнаруживали. Выше температуры солидуса сплавы, близкие к эвтектическому (когда образуется большое количество жидкости) перегреть на этой установке невозможно. Судя по микроструктуре сплава, содержащего 85 ат. % Ru, отожженного при 1855° С, этот сплав лежит на конце эвтектической горизонтали, и максимальная растворимость титана в рутении.  [c.177]

В работе [111 определялись области гомогенности LagGeg, LaGe и LaGej, а в работах [10,13] сообщалось о температурах плавления этих соединений. Автор работы [12] пришел к выводу, что все три соединения полиморфны.  [c.195]

Зарождение и развитие различных форм локальной неоднородности кристаллических материалов, приводящей в итоге к их разрушению, тесно связано с особенностями поведения поверхностных слоев в процессе пластического деформирования. Авторы обзора [54] многочисленных экспериментальных и теоретических работ в этой области отмечают, что начало процесса пластического течения чаще всего связывается с поверхностью, ее специфическим влиянием на общий процесс макропластической деформации. Влияние это сложно и многообразно и до конца еще не изучено, так как исследование почти всех новерхностнглх эффектов носит качественный характер из-за отсутствия методов, позволяющих получить раздельную информацию но энергетическим характеристикам пластического течения в поверхностных и внутренних слоях материалов. Окончательно не решен вопрос и о природе аномального поведения поверхностных слоев, хотя большинство исследователей связывают особенности пластического течения в приповерхностных слоях с повышенной концентрацией гомогенных и гетерогенных источников и особенностями генерирования ими дислокаций [54].  [c.22]

Почвы редко бывают гомогенны их состав меняется как по горизонтали, так и по вертикали. Гетерогенность увеличивается при земляных работах. Кроме того, свойства изменяются в зависимости от времени года в результате дождей, таяния снега, высыхания и т.п. Такова основная характеристика среды, воздействующей на подземные конструкхщи.  [c.50]

С помощью специальной термообработки можно сделать так, что дислокации будут огибать частицы аг. При этом восстанавливается однородность скольжения [200], но сохраняется его планарный характер. Можно было бы ожидать, что переста-ривание аг оказывает такое же влияние на поведение дислокаций. Действительно, в работе [202] сообщалось о повышении стойкости к КР при перестаривании, однако последующие исследования не подтвердили эти наблюдения [192]. Таким образом, сохранение планарности скольжения (даже ири огибании дислокациями частиц ог) означает и сохранение восприимчивости к КР. Этот вывод подтверждается поведением высокоалюминиевых титановых сплавов, которые остаются склонными к КР после закалки, подавляющей образование аг, но не влияющей на характер скольжения [191]. При гетерогенном образовании аг, например в бинарных сплавах Т1—5п (в частности, в Т з5п), восприимчивость к КР повышается в меньшей степени [203], но силавы, содержащие А1-Ь5п, в которых происходит гомогенное образование Лз (А1, 5п) [190], обладают плохой стойкостью к КР [188]. Термообработка некоторых других а-изоморфных сплавов, например, содержащих индий, может, по-видимому, подавлять образование 02 и повышать стойкость к КР [192].  [c.98]


Смотреть страницы где упоминается термин Работа гомогенного : [c.309]    [c.284]    [c.191]    [c.81]    [c.76]    [c.127]    [c.418]    [c.237]    [c.222]    [c.271]    [c.64]    [c.180]    [c.182]    [c.184]    [c.184]    [c.186]    [c.186]    [c.118]   
Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.96 ]



ПОИСК



Гомогенность



© 2025 Mash-xxl.info Реклама на сайте