Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Несущая способность — Запас

Несколько более сложная модель внезапного отказа будет иметь место в том случае, если предельное состояние изделия также меняется случайным образом (рис. 45, б). Такая схема, например, имеет место, если оценивать вероятность разрушения конструкции от статических пиковых нагрузок, учитывая вероятность сосуществования высоких нагрузок Q и низких значений несущей способности R. Запас прочности конструкции по средним значениям  [c.145]


Для особо ответственных конструкций проводятся исследования несущей способности на натурных элементах конструкции или их моделях в условиях, близких к эксплуатационным. Это позволяет получать наиболее точные данные о несущей способности и запасе прочности конструктивного элемента [6].  [c.383]

Несущая способность дисков. Запасы по разрушающим оборотам  [c.125]

В случае если напряжения в верхней напрягаемой арматуре будут сжимающими, влияние этой арматуры на несущую способность в запас прочности можно не учитывать. Тогда расчетная формула для получения несущей способности элементов при косом изгибе с кручением примет вид  [c.211]

В отличие от существующих методов расчета по допускаемым напряжениям в общем машиностроении и по разрушающим нагрузкам в авиации и ракетной технике, где вероятностная природа нагрузок и несущей способности скрыта либо в коэффициенте запаса прочности, либо в коэффициенте безопасности, в данной работе характеристики вероятностного описания нагрузок и несущей способности непосредственно входят в формулы для определения размеров поперечного сечения, обеспечивающих заданную надежность элемента конструкции. Такой подход более адекватно отражает реальную работу элемента конструкции.  [c.3]

Таблицы строят следующим образом. Всю область изменения случайной величины разбивают на разряды в порядке возрастания и заменяют совокупность значений случайной величины внутри разряда представителем разряда, с которым производят все дальнейшие операции. В качестве представителя разряда можно брать средневзвешенное значение случайной величины внутри разряда или среднее значение разряда [9]. Для удобства и в запас надежности в качестве представителя разряда будем брать для нагрузки - верхнюю границу разряда, а для несущей способности - нижнюю границу. Учитывая известную зависимость S = Kq, для закона распределения напряжений можно получить следующую таблицу  [c.52]

Аналогично проводят расчет и при сложном напряженном состоянии. При асимметричном цикле коэффициент запаса при переменных нагрузках определяется по формуле (21.17), в которой Па и Пх вычисляются соответственно по формулам (21.25) и (21.26). Запас прочности по статической несущей способности определяют по методике, изложенной в гл. 18. При этом прочность оценивается по наименьшему из запасов по усталости и по статической несущей способности.  [c.614]


Одним из наиболее общих условий конструирования машин является у с ло-I и е р а и н о п р о ч н о с т и. Очевидно, что нет необходимости конструировать отдельные элементы машины с излишними запасами несущей способности, которые все равно не могут быть реализованы в связи с выходом конструкции из строя из-за разрушения или повреждения дру-гих элементов.  [c.14]

При проектировании стойки большой гибкости была выбрана сталь с пределом пропорциональности ст ц = 250 МПа. На месте монтажа ее заменили точно такой же стойкой, но изготовленной из более прочной стали с ст ц = 300 МПа. Насколько увеличится несущая способность стойки, если сохранить прежний коэффициент запаса устойчивости  [c.197]

В этом уравнении [т] Тт/п, где Тт — предел текучести при кручении, п — коэффициент запаса прочности. При этом предполагается, что как только наружные волокна достигают предела текучести, несущая способность бруса исчерпывается. Следовательно, помимо того запаса прочности, который дается коэффициентом п, мы имеем запас за счет недогрузки волокон, лежащих ближе к центру.  [c.134]

Если асимметрия цикла очень велика, то роль переменных напряжений при оценке прочности может оказаться несущественной и расчет следует проводить по предельному состоянию, как при статической нагрузке. В связи с этим наряду с запасом прочности по усталости [формулы (22.25), (22.26)] следует определять запас прочности и по несущей способности при статическом нагружении.  [c.678]

Вместе с тем возможен и другой подход к расчету на прочность. Под коэффициентом запаса можно понимать отношение предельной нагрузки к рабочей, эксплуатационной нагрузке. Он показывает, во сколько раз должна увеличиться рабочая нагрузка, чтобы несущая способность конструкции была полностью исчерпана. Этот коэффициент запаса в отличие от коэффициента запаса по напряжениям называется коэффициентом запаса по разрушающим нагрузкам.  [c.143]

Анализ несущей способности на стадии роста трещин возможен с использованием уравнений (5.15) и (5.16). В этом случае при сохранении на прежнем уровне запаса по долговечности возможно повышение ресурса конструкции как следствие ее использования на стадии допустимого повреждения.  [c.97]

При определении несущей способности элементов конструкций, работающих на усталость, по изложенным зависимостям в расчет прочности вводят запасы прочности и требования на надежность против усталостных поломок, а также необходимую информацию об усталостных свойствах и действующих напряжениях.  [c.164]

Определение несущей способности, запаса прочности и вероятности разрушения при циклическом нагружении  [c.165]

Статистическая оценка действующих в детали номинальных переменных напряжений и напряжений, характеризующих ее несущую способность (с учетом влияния концентрации, неравномерности распределения напряжений и размеров сечений) позволяет определить запас прочности в зависимости от вероятности разрушения для совокупности одинаковых деталей парка однотипных изделий. Для стационарно нагруженных изделий условие разрушения отдельных из них определяется вероятностью превышения амплитуды переменных напряжений ffa над пределом выносливости (ст-1)д, имея в виду их статистическое распределение, независимое друг от друга. Разность этих величин, если они описываются нормальным распределением  [c.168]

При действии статических нагрузок иногда используют запас прочности по несущей способности  [c.264]

Боропластик, использованный для изготовления обшивок, имел перекрестную структуру армирования типа 0/ 45/90°, число слоев изменялось от 30 до 116. В каждом обшивочном листе содержалось не менее двух слоев с ориентацией 90° с тем, чтобы противостоять давлению топлива, исключить потерю устойчивости при сжатии и обеспечить малую ползучесть при нагружении при температуре 176° С. Выполняемые внахлестку ступенчатые соединения на внутренних концах проектировались так, чтобы нагрузка воспринималась осью вращения. Это предпринималось с целью смещения разрушения в испытуемую секцию и, следовательно, создания дополнительного запаса безопасности при проведении испытаний. Каждый внутренний облицовочный лист внутренней нервюры был усилен дополнительными слоями для повышения несущей способности. Зоны усиления технологических отверстий в титановых элементах конструкции также крепились к обшивочным листам с помощью ступенчатых соединений. Для того чтобы обеспечить высокое качество изготовления обшивочных листов, каждый слой препрега сначала выкладывался и раскраивался на шаблоне из пленки Майлар, затем в должной последовательности производилась сборка пакета препрегов и титановых прокладок в местах соединений, после чего производилось отверждение полученной заготовки.  [c.148]


Уточнить по результатам экспериментальной и расчетной оценки несущей способности конструкции величины коэффициентов запаса по нагрузкам, деформациям или числу циклов.  [c.136]

В связи с ограниченным ресурсом пластичности реальных металлов, наряду с расчетом по предельному равновесию, существующие нормы предусматривают также определение максимальных суммарных (от центробежных сил и температурного поля) напряжений. Таким образом, нормами прочности в настоящее время регламентируются значения двух запасов прочности для дисков запас по несущей способности (или связанный с ним запас по разрушающим оборотам) и запас местной прочности. Температурные напряжения учитываются только последним.  [c.137]

Аналогия, однако, не означает совпадения. Коэффициент запаса по прогрессирующему разрушению учитывает возможность повторных приложений нагрузки, и отражает уменьшение несущей способности диска вследствие циклического приложения тепловых напряжений. Это снижение может быть существенным и, что важно отметить, неодинаковым для различных конструкций, так как интенсивность тепловых напряжений зависит от ряда факторов и, в частности, от системы охлаждения диска.  [c.159]

Между тем известны случаи, когда вследствие усиленного охлаждения центральной части несущая способность диска снижалась, после ряда пусков обнаруживалось остаточное увеличение его наружного диаметра 103]. Такие факты не находят объяснения в рамках теории предельного равновесия, но они становятся понятными при использовании теории приспособляемости и отражаются запасом то прогрессирующему разрушению.  [c.159]

На примере турбинных дисков было показано, что результаты анализа условий приспособляемости могут служить основой для обобщения данных эксплуатации и испытания типовых конструкций. Это создает определенные возможности для нормирования коэффициентов запаса по приспособляемости и объективной оценки несущей способности вновь проектируемых объектов с учетом их нестационарного нагружения.  [c.246]

На рис. 4 приведено семейство кривых Т = f (f ) для различных значений ст р.. полученное для стали (V 7 см ) при температуре 300 К и значении F = I. Как видно из графика, увеличение начального коэффициента использования несущей способности F приводит к потере долговечности, причем тем большей, чем выше прочностные характеристики металла (сГпр). Поэтому при заданном уровне относительной долговечности, т. е. определенном сроке безаварийной эксплуатации, более высокопрочная сталь требует меньшей начальной относительной нагрузки Это необходимо учитывать при расчетах и проектировании конструкций. При заданном начальном коэффициенте использования несущей способности ( коэффициенте запаса ) долговечность ниже также у высокопрочных сталей. Это обусловлено резким усилением механохимического эффекта при высоких механических напряжениях.  [c.39]

Предельные состояния, несущая способность и запасы прочности. Нроч-ность элементов конструкций оценивается на основе сопоставления возникающих в них усилий от действующих механических нагрузок, тепловых, магнитных и других полей с теми усилиями, которые приводят эти элементы в предельные состояния. Критерии предельных состояний различны в зависимости от условий работы конструкций, механических свойств применяемых материалов, режимов нагружения и тепловых условий.  [c.5]

Для оценки этого фактора необходимо найти эквивалентную модель с трещиной (рис. 3.24, б), которая адекватно отражает работу сварного элемента с острым углом j3 (рис. 3.24, а). Угол р в сварных швах меняется, поэтому для консервативной оценки несущей способности (в запас прочности) можно полагать С onst и р = р/л = 0,5.  [c.153]

При сохранении прежнего запаса прочности, те. при pa i рас2 получим = (4/3)г . Таким образом, добавление второй выточки повышает несущую способность полосы в 4/3 раза (на 33,3%).  [c.191]

Изменение условий закрепленил концов стержня уменьшает несущую способность в (1/0,7) = 2 раза, а замена материала (титан на сталь) увеличивает в E JE = 200/100 = 2 раза Таким образом, запас устойчивости останется прежним  [c.202]

Отметим, что и х я рассматриваемого сл> чая потери пластической >етойчивости толстостенной оболочки по критерию локального утонения кольцевого сечения можно не ч-читывать эффекты, связанные с контактными упрочнениями кольцевых мягких прослоек (при их относительных размерах к < 1), что ведет, в общем, к консервативной оценке несущей способности конструкций (неучет данных эффектов иле г в запас прочности).  [c.205]

Найдем коэффициент Р = Ра/Р] = 1,5, отражающий запас несущей способности конструкции. Этим запасом обладает статически неопр делимая система после того, как в наиболее напряженном элементе ее только начали появляться пластические деформации.  [c.32]

В восемнадцати предшествующих главах были изложены различные разделы механики деформируемого твердого тела, при этом практическая направленность каждого из них не очень акцентировалась. Но основная область приложения механики твердого тела — это оценка прочности реальных элементов конструкций в реальных условиях эксплуатации. С этой точки зре-нпя различные главы приближают нас к решению этого основного вопроса в разной степени. Классическая линейная теория упругости формулирует свою задачу следуюш им образом дано пекоторое тело, на это тело действуют заданные нагрузки, точки границы тела претерпевают заданные перемещения. Требуется определить поле вектора перемещений и тензора напряжений во всех точках тела. После того как эта задача решена, возникает естественный и основной вопрос — что это, хорошо или плохо Разрушится сооружение или не разрушится Теория упругости сама по себе ответа на этот вопрос не дает. Правда, зная величину напряжений, мы можем потребовать, чтобы в каждой точке тела выполнялось условие прочности, т. е. некоторая функция от компонент о.-,- не превосходила допускаемого значения. В частности, можно потребовать, чтобы нигде не достигалось условие пластичности, более того, чтобы по отношению к этому локальному условию сохранялся некоторый запас прочности, понятие о котором было сообщено в гл. 2 и 3. Мы знаем, что для пластичных материалов выполнение условия пластичности в одной точке еще не означает потери несущей способности, что было детально разъяснено на простом примере в 3.5. Поэтому расчет по допустимым напряжениям для пластичного материала безусловно гарантирует прочность изделия. Для хрупких материалов условие локального разрушения отлично от условия наступления текучести и локальное разрушение может послужить началом разрушения тела в целом. Поэтому расчет по допускаемым напряжениям для хрупких материалов более оправдан. Аналогичная ситуация возникает при переменных нагрузках и при действии высоких температур. В этих условиях даже пластические материалы разрушаются без заметной пластической деформации и микротрещина, возникшая в точке, где 42  [c.651]


Расчет по предельным нагрузкам позволяет более полно использовать несущую способность конструкций, чем расчет по допускаемым напряжениям, и потому он является более экономичным. Такой способ расчета называют также расчетом по несущей способности, расчетом по предельному состоянию, расчетом по разрушающим нагрузкам. Предельную нагрузку, деленную на нормативный коэффициент запаса прочности [и], назовем предельно допуекаемой нагрузкой и обозначим [Р]пр  [c.584]

Для курса сопротивления материалов, отражающего развитие механики деформируемого твердого тела и усовершенствование расчета на прочность современных конструкций, все более актуальным становится освещение вопросов механики разрушения как основы оценки несущей способности по сопротивлению хрупкому и усталостному разрушению. Эти критерии несущей способности в свете закономерностей распространения макроразру-щения входят в тесную связь между собой, существенно углубляя представления о кинетике образования предельных состояний и запаса прочности в процессе исчерпания ресурса при работе изделий.  [c.3]

Коррозионная усталость. Коррозионная среда отрицательно влияет на усталостную прочность практически всех конструкционных металлов и сплавов. Так, в речной воде, являющейся сравнительно малоагрессивной средой, усталостная прочность нержавеющих сталей снижается на 10— 30 %, углеродистых и легированных конструкционных сталей —в 1,5—2 раза, высокопрочных алюминиевых сплавов —в 2—3 раза. Особенно сильное воздействие среды наблюдается при наличии концентраторов напряжений. Как правило, при испытании в коррозионных средах не наблюдается физический предел выносливости, поэтому при большом числе циклов (10 —10 ) нагружения несущая способность образца может оказаться очень низкой. Это заставляет значительно увеличивать запасы прочности конструкций, подвергающихся циклическим нагрузкам и работающих в коррозионной среде.  [c.158]

Учет коррозионного износа стенок газопроводов, транспортирующих среды, содержащие сероводород, обычно производили путем увеличения толщины стенки на 3 мм для неосушенных сред и на 2 мм для осушенных по сравнению с номинальными толщинами для неагрессивных сред. Однако эти величины не являются обоснованными, так как базируются на понятии максимальная допустимая скорость коррозии в предположении постоянства этой величины во времени, что не соответствует реальным условиям эксплуатации. Действительно, несущая способность стенки трубопровода, подвергаемой воздействию общей коррозии (коррозионное растрескивание в присутствии сероводорода исключается соответствующим выбором состава и термообработки стали и определяется достижением предельного допускаемого значения напряжения, которое для газопромысловых трубопроводов в зависимости от кате гор ийности трубопровода составляет 0,3— 0,5ff ), определяется действующими напряжениями. Динамика изменения напряженного состояния в стенке трубопровода зависит от изменения как силовых нагрузок (давления), так и толщины стенки вследствие ее коррозионного износа. В свою очередь изменение механических напряжений в стенке вызывает изменение скорости коррозионного износа. Неучет реальной динамики этих процессов при назначении толщины стенки может привести либо к занижению запаса толщины на коррозионный износ, либо к неоправданному ее завышению и перерасходу металла.  [c.243]

Специфической особенностью повреждения при малоцикловой усталости, отличающей ее от обычной усталости, является накопление односторонней макропластической деформации. Эта особенность сначала порождала сомнения в приемлемости поверхностного наклепа для увеличения несущей способности деталей, работающих в условиях малоцикловой усталости. Эти сомнения базировались на том, что ППД сопровождается уменьшением запаса пластичности наклепанного слоя, тогда как способность к накоплению пластической деформации является одним из основных факторов, определяющих сопротивление малоцикловой усталости материалов и конструкций. По той же причине ставилась под сомнение устойчивость благоприятных остаточных напряжений, вызванных поверхностным наклепом. Однако в результате ряда специальных исследований (применительно к сосудам давления, подштамновым плитам прессов, корпусам подводных лодок и др.) эти сомнения были преодолены. К настоящему времени накоплен большой экспериментальный материал, подтверждающий возможность применения поверхностного наклепа для увеличения несущей способности материалов в условиях малоцикловой усталости.  [c.164]

Поверхностный наклеп. Наиболее деформированные в процессе резания поверхностные слои металла имеют высокую плотность дислокаций, соответствующую преобразованию субмикро-скопических трещин в микротрещины (необратимую повреждаемость), в значительной мере исчерпанный запас пластичности, большую скрытую энергию наклепа, низкую несущую способность.  [c.201]

За паследние годы в СССР большое развитие получил новый подход к оценке надежности конструкций путем расчета ). Он уже упоминался в предыдущем параграфе, где назывался методом расчета по предельным состояниям. Этот метод во многом близок к методу расчета по допускаемым нагрузкам, но отличается от последнего в части, относящейся к коэффициенту запаса. Метод расчета по предельным состояниям узаконен нормами и официально принят в СССР как основной метод расчета строительных конструкций, мостов и других сооружений. Понятие расчета по предельным состояниям включает в себя большее содержание, нежели расчет на прочность. В этом методе рассматриваются три предельных состояния по несущей способности, по жесткости и по тре-щинообразеванию. Коснемся лишь первого.  [c.209]

Несущая способность масляного клина, создаваемая при вращении элементов пары, значительно уменьшается при наличии погрешностей в расположении цапфы и вкладыша подшипника, а также погрешностей их формы в поперечном и продольном сечениях. При увеличении зазора увеличивается расход масла для смазки и ухудшаются эксплуатационные показатели машин. Если при изготовлении часть вкладышей будет иметь наибольшие, а часть цаиф—наименьшие предельные размеры, то при определенном сочетании запаса на износ практически не останется. Для обеспечения запаса на износ посадку подбирают по наименьшему зазору, обеспечивающему жидкостное трение, с учетом температурных и силовых деформаций цапфы и вкладыша, а также других конструктивных и эксплуатационных факторов.  [c.166]

В еще более подъемистых оболочках значительные моменты действуют в приконтурных зонах, а при достаточной жесткости диафрагм — в местах примыкания иолки к контуру (см. рис. 3.14). В таких оболочках первые трещины образуются по кольцевым сечениям в местах действия максимальных моментов. С ростом нагрузки в кольцевом сечении с трещиной моменты и силы распора достигнут предельного значения и несущая способность сечения будет исчерпана, 1ири этом меридиональные сечения могут обладать еще некоторым запасом прочности. После исчерпания несущей способности кольцевого сечения (вторая схема разрушения) часть покрытия, ограниченную кольцевой трещиной, можно рассматривать как статически определимую систему, а именно, купол, загруженный предельной нагрузкой, с опорными реакциями в виде предельных нормальных меридиональных сил, поперечных сил и предельных моментов. При такой схеме происходит хрупкое разрушение конструкции без образования кинематического механизма. Такой вид разрушения получен в исследовании [7, ч. 2] (рис. 3.15).  [c.206]



Смотреть страницы где упоминается термин Несущая способность — Запас : [c.37]    [c.465]    [c.35]    [c.268]    [c.173]    [c.40]    [c.37]    [c.308]   
Детали машин Издание 3 (1974) -- [ c.15 ]



ПОИСК



Запас

Запас прочности Выбор по несущей способности

Запас прочности Определение Формулы по статической несущей способности — Ра счет

Запасы прочности по несущей способности

Несущая способность

Несущая способность дисков. Запасы но разрушающим оборотам

Определение несущей способности, запаса прочности и вероятности разрушения при циклическом нагружении

Ток несущий



© 2025 Mash-xxl.info Реклама на сайте