Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория свободных электронов Зоммерфельда

Теория Блоха (гл. 8) обобщает равновесную теорию свободных электронов Зоммерфельда (гл. 2) на случай наличия периодического (не постоянного) потенциала. В табл. 12.1 мы сравниваем основные черты двух теорий.  [c.216]

Свойства щелочных металлов являются уникальными в том отношении, что только они обладают почти сферическими поверхностями Ферми, целиком лежащими внутри одной зоны Бриллюэна. Благодаря этой особенности детальный полуклассический анализ, проведенный в гл. 12, в применении к кинетическим свойствам щелочных металлов сводится к простой теории свободных электронов Зоммерфельда, обсуждавшейся в гл. 2. Поскольку для свободных электронов анализ проводится гораздо проще, чем для блоховских электронов в общем случае, щелочные металлы представляют собой ценный испытательный полигон для исследования различных сторон поведения электронов в металле, поскольку здесь нам не приходится сталкиваться с колоссальными аналитическими трудностями, связанными с зонной структурой.  [c.287]


Теория свободных электронов успешно объясняет многие характерные свойства металлов. Наиболее явные недостатки модели в том виде, как она была первоначально предложена Друде, связаны с тем, что для описания электронов проводимости в ней используется классическая статистическая механика. Вследствие этого даже при комнатной температуре рассчитанные значения термо-э. д. с. и теплоемкости оказываются в сотни раз больше наблюдаемых. Расхождение все же не казалось столь серьезным, так как классическая статистика случайно дает сравнительно точное значение постоянной в законе Видемана— Франца. Зоммерфельд устранил подобные недостатки, применив к электронам проводимости статистику Ферми — Дирака, но оставив без изменения все другие основные предположения модели свободных электронов.  [c.70]

Основной источник трудностей, с которым сталкиваются теории Друде—Лорентца и Зоммерфельда, связан с приближением свободных электронов. Учет взаимодействия электронов с кристаллической решеткой и между собой сделан в зонной теории твердых тел, основы которой будут рассмотрены ниже.  [c.210]

Дирака, Зоммерфельд сразу устранил основные трудности, с которыми сталкивалась теория газа свободных электронов. Действительно, обращаясь к формулам Друде  [c.159]

Исторически первым и простейшим вариантом модели Э, г, была теория металлов Друде—Лоренца, в к-рой Э, г. рассматривался как идеальный газ (см. Друде теория металлов). Теорию Друде—Лоренца сменила Зоммерфельда теория. металлов, в к-рой учтено вырождение Э, г. Теория Э.г. по Друде — Лоренцу сохраняет своё значение для полупроводников, если принять во внимание, что число частиц Э.г. зависит от темп-ры, а эффективная масса носителей заряда отлична от массы свободного электрона.  [c.573]

РАСПРЕДЕЛЕНИЕ ФЕРМИ — ДИРАКА СВОБОДНЫЕ ЭЛЕКТРОНЫ ПЛОТНОСТЬ РАЗРЕШЕННЫХ ВОЛНОВЫХ ВЕКТОРОВ ИМПУЛЬС, ЭНЕРГИЯ И ТЕМПЕРАТУРА ФЕРМИ ЭНЕРГИЯ ОСНОВНОГО СОСТОЯНИЯ И МОДУЛЬ ВСЕСТОРОННЕГО СЖАТИЯ ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ГАЗА СВОБОДНЫХ ЭЛЕКТРОНОВ ТЕОРИЯ ПРОВОДИМОСТИ ЗОММЕРФЕЛЬДА ЗАКОН ВИДЕМАНА — ФРАНЦА  [c.43]

Сразу же после открытия того, что для объяснения связанных состояний электронов в атомах необходим принцип запрета Паули, Зоммерфельд применил этот принцип к свободному электронному газу в металлах, что позволило избавиться от наиболее вопиющих термодинамических противоречий исходной модели Друде. В большинстве случаев модель Зоммерфельда представляет собой просто модель классического электронного газа Друде с единственным отличием распределение электронов по скоростям описывается статистикой Ферми — Дирака, а не Максвелла — Больцмана. Чтобы обосновать использование распределения Ферми — Дирака и оправдать его включение в классическую во всех остальных отношениях теорию, нам необходимо изучить квантовую теорию электронного газа ).  [c.45]


В приближении свободных электронов коренится основной источник трудностей, с которыми сталкиваются теории Друде и Зоммерфельда. В него входят несколько упрощений.  [c.73]

Теорема Блоха вводит в теорию волновой вектор к, который играет в общей задаче о движении в периодическом потенциале такую же роль, какую играет волновой вектор к свободного электрона в теории Зоммерфельда. Заметим, однако, что в то время как для свободных электронов волновой вектор равен р/Й, где р — импульс электрона, в блоховском случае волновой вектор к не пропорционален импульсу электрона. Это ясно, из общих соображений, так как гамильтониан в присутствии неоднородного потенциала не обладает полной  [c.145]

Теория металлов Зоммерфельда 145—69. См. также Приближение свободных электронов Теория металлов Лоренца 166, П 208 (с)  [c.444]

Теория жидкостей, сравнение с теорией твердых тел I 74 Теория Кондо II 302—304 Теория локального поля II 163—166 Теория металлов Зоммерфельда I 45—69. См. также Приближение свободных электронов  [c.411]

Создание современной электронной теории металлов — заслуга Зоммерфельда [2], который дал новую квантовомеханическую формулировку электронной теории Друде — Лоренца. Теория Зоммерфельда полностью разрешила трудности с теплоемкостью. Другим блестящим успехом современной электронной теории металлов была созданная Паули [3] теория парамагнетизма свободного электронного газа-"  [c.267]

В этом неудовлетворительном состоянии теория оставалась до открытия принципа Паули и создания статистики Ферми-Дирака. После этого Зоммерфельд ) видоизменил подход Лоренца, применяя квантовую статистику вместо классической. Как мы увидим ниже, практически это устранило все трудности, за исключением тех, которые связаны с изменением средней длины пробега при низких температурах. Хаус-тон 2) и Блох смогли объяснить появление больших длин свободного пробега иа основе квантовомеханического описания взаимодействия между электронами и ионами решётки.  [c.155]

Налагая на волновые функции соответствующее граничное условие, можно показать, что волновой вектор к должен быть действительным, и получить условие, которому должны удовлетворять разрешенные значения к. Обычно выбирается граничное условие, представляющее собой естественное обобщение условия (2.5), используемого для кубического ящика в теории свободных электронов Зоммерфельда. Как и в том случае, мы вводим в теорию ящик , в который помещены электроны, и накладываем граничные условия Борна — Кармана (см. стр. 46), т. е. требование макроскопической периодичности. Если решетка Бравэ пе является кубической и сторона куба Ь не равна.целому числу постоянных решетки а, то выбор кубического ящика со стороной Ь не дает никаких преимуществ. Вместо этого гораздо удобнее работать с ящиком , соразмерным элементарной ячейке соответствующей решетки Бравэ. Поэтому мы обобщим периодическое граничное условие (2.5), запнсав его в форме  [c.142]

Именно с предположением а , согласно которому ионы не оказывают никакого влияния на движение электронов между столкновениями, связаны основные недостатки теорий Друде и Зоммерфельда, описанные выше. У читателя может возникнуть законный вопрос чем же отличаются предположения а и б , поскольку совершенно не ясно, как различать столкновительные и нестол-кновительные аспекты в том воздействии, которое ионы оказывают на электроны Ниже, однако, мы увидим (особенно в гл. 8 и 12), что если пренебречь возможностью движения ионов ( приближение неподвижных ионов ), то поле, создаваемое статической ионной решеткой, удается полностью учесть посредством небольшой модификации теорий свободных электронов Друде и Зоммерфельда. При этом оказывается, что в получающейся теории столкновения должны вообще отсутствовать Лишь при учете движения ионов проясняется их роль в происхождении столкновений.  [c.74]


В первое время поело завершения разработки теории Зоммерфельда полагали, что наблюдаемое на опыте влияние магнитного ноля на сопротивление металлов может быть приписано тепловому разбросу скоростей электронов, т. е. к Г (см., например, [105]). Однако расчет показал, что такое предположение может объяснить только малую часть наблюдаемого в действительности влияния магнитного поля на сопротивление металлов и не способно интерпретировать ряд других особенностей этого явления. Бете [106] и Пайерлс [107] предположили, что вариации электронных свойств различных металлов могут быть связаны с характерным для каждого из них отступлением от идеальной изотропной модели свободных электронов. Так, с одной стороны, влияние периодического поля решетки может привести к тому, что электроны, обладающие одинаковыми энергиями (фермиевскидш), будут иметь при движении в разных направлениях различные скорости. Это означает, что поверхность Ферми (поверхность постоянной энергии электронов) в простраистве импульсов отличается от сферической.  [c.198]

Теория электронной теплопроводности является частью электронной теории металлов. Одним из первых успехов этой теории было объяснение соотношения между электропроводностью и теплопроводностью, данное Видеманом и Францем [147] и Лоренцем [148] сначала на основании грубой теории Друдэ [149], а потом в более точной теории Лоренца [150] и, наконец, с помощью теории Зоммерфельда [151], в которой рассматривается свободный электронный газ, подчиняющийся статистике Ферми—Дирака. Как будет показано в п. 13, это соотношение может быть найдено из очень общих соображений необходимо лишь предположение о наличии общего времени релаксации для процессов, определяющих электро-и теплопроводность.  [c.224]

Зонная теория [13, 14]. Трудно ожидать, что представление о свободных электронах будет одинаково хорошим приближением для всех металлов. Соотношение (8.6), определяющее уровни энергии, справедливо лишь для частицы в поле с постоянным потенциалом, тогда как на самом деле потенциальная энергия электрона в металле не постоянна, а зависит как от строения иоиной решетки, так и от состояний других электронов. Определение ее точного вида приводх1т к задаче самосогласованного поля, подобной рассмотренной Хартри. Решение Зоммерфельда, исходившего из предположения о постоянстве потенциала, является, по сути дела, первым приближением к решению такой задачи. Второе приближение можно построить, предполагая, что потенциал, обусловленный самими электронами, постоянеп, и учитывая в уравнении Шредингера лишь иоле положительных ионов решетки. Для приближенного решения соответствующего уравнения Шредингера были предложены различные методы, позволяющие провести хотя бы качественное обсуждение поведения электронов в реальных металлах.  [c.324]

Первая классическая теория электропроводности была развита ДруДЬ. В ней предполагалось, что поведение всех электронов в электрическом поле одинаково. Взаимодействие с решеткой осуществляется процессами столкновений, при которых происходит обмен энергией и импульсом. Между двумя столкновениями электрон свободно ускоряется внешним иолем. Совместное действие ускорения и столкновений приводит к некоторой средней постоянной скорости, которая линейно изменяется с полем (закон Ома). Закон Видемана —Франца также легко следует из теории. Однако ничего нельзя сказать о температурной зависимости концентрации электронов. Также нельзя вывести температурную зависимость подвижности. При простых предположениях о температурной зависимости вошедших параметров температурная зависимость подвижности получается неправильной, ого не смогли изменить и дальнейшие улучшения теории, учет распределения скоростей электронов (Лорентц), привлечение статистики Ферми (Зоммерфельд). Несмотря на некоторые очевидные успехи теории Друде —Лорентца —Зоммерфельда, для решительного ее улучшения потребовалось заменить примитивное представление о соударении электронов с ионами решетки на электрон-фононное взаимодействие. Необходимую для этого технику мы уже приводили в предыдущих параграфах этой главы.  [c.232]

Для исследования проводимости необходимо обобщить равновесную теорию Зоммерфельда на неравновесные случаи. В гл. 2 мы утверждали, что, когда нет необходимости указывать местоположение электронов с точностью порядка межэлектронных расстояний, для расчета динамического поведения газа свободных электронов можно пользоваться обычной классической механикой. Поэтому траекторию каждого электрова в промежутках между столкновениями мы рассчитывали в соответствии с обычными уравнениями движения частицы с импульсом Йк  [c.216]


Смотреть страницы где упоминается термин Теория свободных электронов Зоммерфельда : [c.17]    [c.138]    [c.327]    [c.87]    [c.72]   
Температура и её измерение (1960) -- [ c.93 , c.212 ]



ПОИСК



Зоммерфельд

Зоммерфельда электронная теори

Теория Зоммерфельда

Электронная теория

Электроны свободные



© 2025 Mash-xxl.info Реклама на сайте