Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электронные эффекты нелинейные

Эффекты акустоэлектронного взаимодействия. На опыте АЭВ проявляется либо непосредственно как эффект увлечения носителей заряда акустич. волной, либо в виде зависимости параметров акустич. волны (её скорости, коэф. поглощения и др.) от концентрации носителе проводимости, величины внеш. электрич. и магн. полей. АЭВ — одна из причин дисперсии звука в твёрдых телах. Получая в процессе АЭВ энергию, электроны рассеивают её при столкновениях с дефектами и тепловыми фононами, обусловливая электронное поглощение УЗ. Зависимость коэф. поглощения от частоты при этом может отличаться от квадратичной, предсказываемой классич. теорией (см. Поглощение звука). В полупроводниках в сильном электрич. поле поглощение звука сменяется его усилением. Усиление электрич. иолом НЧ-фононов (акустич. шумов) приводит к развитию электрич, неустойчивости в полупроводниках и возникновению акустоэлектрических доменов. АЭВ является источником электронной акустич. нелинейности, к-рая обусловливает зависимость от электронных параметров амплитуд акустич. волн, возникающих в результате нелинейного взаимодействия, эффекты электроакустического эха в полупроводниках и др.  [c.56]


Получение сверхсильных полей позволяет экспериментально наблюдать эффекты нелинейной квантовой электродинамики. В полях напряжённостью ж 10 В/см (/ ж 10 Вт/см ) возможна генерация электронно-позитронных пар в вакууме ( оптич. пробой вакуума ). Хотя достижение таких полей пока представляется проблематичным, взаимодействие уже  [c.294]

Уравнение (4.3.1) предполагает мгновенность нелинейного отклика и справедливо, только если время отклика много меньше длительности импульса То- Влияние конечного времени отклика на ФСМ было исследовано, в частности, для жидких нелинейных сред, таких, как Sj, где Т = S 10 пс, и может быть больше длительности пикосекундных импульсов Tq [2, 5]. В случае волоконных световодов T)j 5 фс из-за электронной природы нелинейности. Если длительности оптических импульсов Тд < 100 фс, необходимо учитывать конечность времени нелинейного отклика. В самой простой модели предполагается, что нелинейный отклик спадает экспоненциально, и эволюция импульса изучается на основе уравнений (2.3.37) и (2.3.39) [48]. Несколько другой подход использовать вместо уравнения (4.3.39) уравнение (2.3.35) [49]. Связь и справедливость двух подходов обсуждались в разд. 2.3. Влияние конечного времени отклика наиболее примечательно в сь 1зи с солитонами оно приводит к распаду солитонов [48, 49] и смещению частоты [50, 51]. Эти эффекты будут рассмотрены в гл. 5.  [c.102]

Заметим, наконец, что прорыв в область сверхсильных полей снова привлек интерес к возможностям экспериментального наблюдения эффектов нелинейной квантовой электродинамики. Хотя даже в самых смелых прогнозах речь не идет о генерации световых полей напряженностью В/см (/ 10 Вт/см ), при которых возможна генерация электронно-позитронных пар в вакууме ( оптический пробой вакуума ), столкновение уже доступных интенсивных лазерных пучков с релятивистскими электронами может привести к наблюдению ряда эффектов, представляющих принципиальный интерес.  [c.295]

Эффект Керра связан с нелинейным откликом атомов и молекул среды на интенсивное световое поле. Различают электронный эффект Керра, возникающий за счет наведенной полем деформации распределения электронной плотности, практически мгновенно следующей за изменением поля, а также ориентационный эффект Керра. Он обусловлен электронно-ядерной частью нелинейной поляризуемости. Время релаксации данного эффекта для атмосферного воздуха при нормальных условиях составляет 10 с.  [c.13]


В первой части детально представлены основы общей классической теории и наиболее важные физические модели. Последующее описание нелинейных электронных эффектов и эффектов, связанных с относительным движением электронов и ядер, ограничено примерами, которые могут быть рассмотрены в наиболее простых условиях. Применение изложенных общих основ к более сложным случаям может быть предоставлено читателю.  [c.9]

ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ЭЛЕКТРОНАМИ В АТОМАХ И МОЛЕКУЛАХ. МОДЕЛЬ ДЛЯ НЕЛИНЕЙНЫХ ЭЛЕКТРОННЫХ ЭФФЕКТОВ  [c.108]

Фазовая самомодуляция достаточно мощных импульсов в среде с безынерционной нелинейностью (электронный эффект Керра) является на настоящий день единственным реальным способом создания необходим мой частотной модуляции. При этом среду для фазовой самомодуляции удобно брать в виде тонких длинных стеклянных (или кварцевых) волокон нужной длины - оптических волоконных световодов.  [c.54]

Эффекты, сходные с излучением Вавилова — Черенкова, хорошо известны в области волновых явлений. Если, например, судно движется по поверхности спокойной воды (озера) со скоростью, превышающей скорость распространения волн на поверхности воды, то возникающие под носом судна волны, отставая от него, образуют плоский конус волн, угол раскрытия которого зависит от соотношения скорости судна и скорости поверхностных волн. При движении снаряда или самолета со сверхзвуковой скоростью возникает звуковое излучение ( вой ), законы распространения которого также связаны с образованием так называемого конуса Маха . Явления эти осложняются нелинейностью аэродинамических уравнений. В 1904 г. Зоммерфельд рассчитал электродинамическое (оптическое) излучение подобного рода, которое должно возникать при движении заряда со скоростью, превышающей скорость света. Однако через несколько месяцев после появления работы Зоммерфельда создание теории относительности сделало бессмысленным рассмотрение движения заряда со скоростью, превышающей скорость света в пустоте, и расчеты Зоммерфельда казались лишенными интереса. Физическая возможность появления свечения Вавилова — Черенкова связана с движением электрона со скоростью, превышающей фазовую скорость световой волны в среде, что не стоит ни в каком противоречии с теорией относительности.  [c.764]

В кристаллах с ионной или частично ионной связью, например в полупроводниках типа А преобладающим является рассеяние на оптических колебаниях решетки, так как эти колебания приводят к появлению сильного электрического поля при смещении подрешетки положительных ионов относительно подрешетки отрицательных ионов. Как показывает теория, для такого рассеяния подвижность свободных носителей заряда растет с ростом <у). Это означает, что с увеличением <и> взаимодействие электронов с решеткой ослабляется. Поэтому с ростом поля электронный газ сильно разогревается. При этом в арсениде галлия, фосфиде индия и некоторых других полупроводниках наблюдается эфс )ект дрейфовой нелинейности нового типа. Впервые он был открыт Ганном в арсениде галлия и назван эффектом Ганна.  [c.195]

В кристаллах в поле интенсивных сверхкоротких импульсов зарегистрированы эффекты, обусловленные быстрыми (электронными) нелинейностями  [c.296]

Электронные эффекты нелинейные 25, 108, 162 Электроны в плазме 105 Электрооптический эффект лв-нейнын 164 Электрострикция 186, 191 Энергии диссипация 47  [c.241]

Электронная а к у с т и ч. нелинейность. Рассмотренные выше эффекты относились к распространению достаточно слабого УЗ. С повышением интенсивности звуковой волны всё большую роль начинают играть нелинейные эффекты, искажающие её форму, ограничиваю1цие рост её интенсивности при усилении или уменьшающие её затухание. В проводящих средах, помимо обычного решёточного энгармонизма, существует специфич. механизм нелинейности, связанный с захватом электронов проводимости в минимумы потенциа.тьной энергни электрич. ноля, сопровождающего акусгнч. волну (т. н. электронная акустич. нелинейность). В полупроводниках такой механизм нелинейности становится существенным ири иптепсивностях УЗ, значительно меньших тек, при к-рых сказывается ангармонизм решётки, характерный для диэлектриков. Захват электронов электрич. полом волны приводит к разд. эффектам в зависимости от соотношения между длиной звуковой волны и длиной свободного пробега злектрона.  [c.58]


Нелинейный отклик отд. атома или молекулы на электрич. поле световой волны — не единств, причина нелинейных оптич. эффектов. Н. в. могут иметь, напр., тепловую природу, когда поглощение света вызывает нагрев, а следовательно, изменение коэф. преломления вещества. К нелинейному изменению коэф. преломления может привести изменение плотности вещества из-за расширения, связанного с квадратичной электро-стрикцией в поле световой волны. В жидкостях и жидких кристаллах существенны нелинейности, обусловленные оптич. ориентацией анизотропных молекул в поле поляризов. лазерной волны. Электронные механизмы нелинейности удаётся отличить от тепловых, стрик-ционных, ориентационных по временам установления нелинейного отклика и его релаксации, к-рые для электронных процессов, как правило, меньше.  [c.310]

В первую очередь мы исследуем нелинейные оптические явления низшего, т. е. второго, порядка они служат примером для объяснения общих методов НЛО. При этом мы ограничимся рассмотрением стационарных процессов, т. е. исключим из расчета устанавливающиеся процессы. Такой подход вполне оправдан в случае непрерывно излучающих во времени источников света, так как при этом через короткое время после включения в каждой точке устанавливаются постоянные значения амплитуд напряженности поля и поляризации. Если же применяются импульсные лазеры, то время Т, в течение которого амплитуда излучения в заданной точке мало изменяется, должно быть большим по сравнению с временем Те установленйя состояния среды. Если частоты распространяющихся световых волн достаточно удалены от резонансных частот исследуемого вещества, то при электронных эффектах это условие выполняется даже для наиболее коротких из полученных до сих пор световых импульсов с). Кроме того, допустим,  [c.162]

Как и в гл. 3, ограничимся здесь сначала стационарными процессами, что позволит получйть наглядное представление о возникающих нелинейных зависимостях. Однако следует подчеркнуть, что в эффектах относительного движения электронов и ядер время установления колебаний оказывается более продолжительным. Поэтому при стационарном описании предъявляются более жесткие требования к длительности применяемых импульсов, чем при чисто электронных эффектах. Об этом еще будет сказано при рассмотрении конкретных эффектов (особенно самофокусировки и рассеяния Бриллюэна).  [c.185]

В изотропных средах возникают эффекты третьего порядка, при которых геометрические свойства распространения электромагнитных волн зависят от амплитуды напряженности электрического поля. На эти свойства распространения волны с частотой могут влиять, кроме компоненты напряженности поля с той же частотой /, также компоненты с другими частотами, например Простая модель, объясняющая такую зависимость, уже была представлена в 2.3. На основании этой модели было описано возникновение нелинейной поляризации в результате ориентации анизотропных молекул. При известных условиях эта поляризация служит существенным фактором, влияющим на распространение волн. Напомним явление, описанное в 2.3 если в связанной с молекулой системе координат существует строгая линейная зависимость между Р. и то в лабораторной системе координат возникает нелинейная поляризация, которая, очевидно, обусловлена ориентацией отдельных молекул. При этом существенную роль играет не только движение электронов, но и вращательное движение ядер. Поэтому настоящий параграф посвящен эффектам электронно-ядерного движения. Следующей причиной зависимости свойств распространения от амплитуд напряженности поля является электрострикцня. При элек-трострикции электрическое поле изменяет плотность среды, что влечет за собой изменение оптических констант. Следовательно, и в этом случае играет роль движение молекул в целом. Значения восприимчивости жидкостей с сильно анизотропными молекулами, соответствующие модели 2.3, и значения электрострикции имеют, вообще говоря, одинаковые порядки величин (10 3°А-с-м-В" ) наоборот, в жидкостях из изотропных молекул, т. е. молекул со сферической формой эллипсоида поляризуемости, электрострикцня часто превалирует над всеми другими возможными причинами. Наконец, в очень сильных полях может появиться и чисто электронный эффект. Он обусловлен тем, что связь между  [c.186]

Электронное поглощение УЗ Электронная дисперсия звука Акустоэлектриче-ский эффект Электронная акустическая нелинейность  [c.52]

Уравнение (49,18) имеет вид уравнения диффузии в пространстве скоростей, причем играет роль тензора коэффициентов диффузии (индекс (н) напоминает о том, что эта диффузия связана с эффектами нелинейности). Эти коэффициенты как функции скорости электронов отличны от нуля в интервале Ду вблизи у , связанном с разбросом Дк согласно (49,3). В этой области скоростей и будет происходить диффузия и соответственно возникает искажение функции распределения (остающейся максвелловской для всей остальной массы электронов). Характер этого искажения очевиден из общих свойств всяких диффузионных процессов диффузия приводит к сглаживанию, т. е. в данном случае—к возникновению в хвосте функции (р) (при и Уо Ог(,) плато ширины Ду, как это изображено схематически на рис. 13. Отметим, что при таком характере искажения изменяется главным образом производная dfjdp, а само значение fo остается близким к максвелловскому.  [c.248]

В выражении (12.10) опущен малый член, пропорциональный 3 ст-Если иметь дело со слабым световым полем, то оно не вызовет нелинейных эффектов, что позволяет пренебречь ангармоническим членом в уравнении (12.10). Тогда движение электрона опишется уравнеимем  [c.286]


Этот эффект, называемый также рассеянием света на свете, согласно предсказаниям квантовой электродинамики, должен существовать в вакууме в результате рождения виртуальных электрон-позитрон-ных пар. Вероятность этого процесса обратно пропорциональна энергии рождения пары, равной 1 МэВ, и поэтому эффект крайне мал и до сих пор не наблюдался. Поскольку в веществе энергия рождения пары электрон— дырка имеет порядок 1 эВ, то должен существовать эффект рассеяние света на свете в веществе с интенсивностью, на много порядков большей и поэтому доступной наблюдению, что подтверждено опытами С. М. Рывкина и др. До сих пор рассеяние света на свете наблюдалось лишь в конденсированном веществе (в воде, в кристаллах кальцита и dS), нелинейность которого гораздо больше вакуума.  [c.412]

В К. с. к. р. регистрируют рассеянный сигнал в специально выбранном спектральном диапазоне, свободном от засветок возбуждающего излучения и паразитных некогерентных эффектов типа люминесценции (обычно используется антистоксова спектральная область). Высокая коллимировапность пучка когерентно рассеянного излучения позволяет эффективно выделять полезный сигнал на фоне некогерентных засветок и помех при использовании в качестве источников зондирующего излучения узкополосных стабилизироваи-ных лазеров достигается высокое спектральное разрешение полос КР, определяемое свёрткой спектров источников. Благодаря интерференц. характеру формы спектральной линии с помощью К. с. к. р. удаётся наблюдать интерференцию нелинейных резонансов разной природы (в частности, электронных и колебат. резонансов в молекулярных средах). Исключительно высокая разрешающая способность отд. модификаций К. с. к. р. путём подбора условий интерференции даёт возможность выявлять скрытую внутр. структуру неоднородно уширенных полос рассеяния, образованных наложившимися друг па друга линиями разной симметрии. Многомерность спектров К. с. к. р. обеспечивает значительно более полное, чем в спектроскопия спонтанного КР, изучение оптич. резонансов вещества. В К. с. к. р. разработаны методы получения полных комбинац. снектров за время от 10 с до 10 с.  [c.391]

Если К. э. происходит во внеш. поле интенсивной эл.-магн, волны (где в каждом конечном интервале частоты (v, v+Av) содержится много фотонов], то возможен процесс, в к-ром происходит как поглощение из внеш. поля, так и испускание электроном большого числа фотонов. Такой процесс является сложной ф-цией напряжённости внеш. электрич. ноля Е и наз. нелинейным ко мн тон- эффектом. Он происходит с заметной вероятностью при й 137 ,, где Ef, имеет масштаб полей на электронной орбите атома водорода. Такие паиряжённостн электрич. поля  [c.431]

Принципиальное значение для Н. о. имело создание лазеров с модулиров. добротностью (1962), позволяющих иолучать при длительности импульсов 10 — 10 с интенсивности 10 —10 Вт/см . Сильные поля лазеров с модулиров. добротностью позволили начать исследования нелинейных эффектов, кубичных по полю, определяемых х - С помощью этих лазеров получены 3-я и 4-я оптич. гармоники (1963—64), обнаружено явление вынужденного комбинац. рассеяния (1962). Оказалось, что в сильных лазерных полях взаимодействия электронных и колебат. движений в молекулах и кристаллах приводят к фазиронке колебаний рассеяние становится когерентным, интенсивность рассеянного света возрастает на много порядков.  [c.293]

Нелинейный отклик сйеЙодных и связанных оптич. электронов — универсальная, но не единственная причина возникновения нелинейных оптич. явлений. Существенными оказываются нелинейные колебания многоатомных молекул и кристаллич. решётки, возбуждение светом явлений дрейфа, диффузии зарядов в кристаллах (фоторефрактивный эффект), индуцированная световой волной ориентация анизотропных молекул в жидкостях и жидких кристаллах (оптический Керра зффект), электрострикция, разл. тепловые эффекты и т. п. Перечисленные механизмы приводят к появлению оптич. нелинейностей, существенно различающихся по величине и времени установления нелинейного отклика Хил- Для наиб, быстрой нерезонансной электронной нелинейности Тдл 10 с , для инерционной тепловой нелинейности > 10 с.  [c.295]

Слабый эффект генерации 2-й оптич. гармоники был открыт в естеств. кристалле кварца. Получение кпд оптич. удвоителя частоты, достигающего десятков процентов, стало возможным только за счёт использования искусственно выращенных кристаллов, позволяющих реализовать условия синхронизма. Поэтому большая величина нелинейвой восприимчивости — не единств, требование к эфф. нелинейному материалу. Обычно необходима совокупность таких свойств, как нелинейность, двулучепреломлеяие, область прозрачности, оптич. прочность и т. п. Возможности варьирования величин квадратичной нелинейной восприимчивости обусловленной быстрой электронной нелинейностью, относительно невелики. Анализ эксперим. данных позволяет сформулировать полуэмпирич. закономерность, связывающую спектральные компоненты квадратичной восприимчивости с компонентами  [c.298]

Поведение электронно-ядерной спин-системы в условиях О. о. описывается системой связанных нелинейных ур-ний. При определённой пространственной структуре поля Ня есть области решений, где поляризация электронов и ядер бистабильна (рис. 3, б), а также решение, к-рое неустойчиво, что соответствует возникновению незатухающих колебаний (рис. 3, в). Бистабильность и неустойчивость поляризации люминесценции наблюдались при О. о. в твёрдых растворах А1д.Оа1 Лэ, в к-рых существенную роль играет локальное нарушение кубич. симметрии, вызванное частичным замещением атомов Са на А1. Период незатухающих колебаний р в зависимости от внеш. условий изменялся в диапазоне 10—50 с. Нелинейные эффекты — следствие коллективного характера электронно-ядерных взаимодействий при О. о. Они наблюдались в диапазоне Н 0,1—1000 Э.  [c.439]

ПЛАЗМЕННАЯ ЧАСТОТА — частота ленгмюровских колебаний, называемых также плазменными колебаниями и продольными (к II Е) колебаниями пространственного заряда Юр = У4лпе /т , п — плотность, е и — заряд и масса электрона, к — волновой вектор, Е — электрич. поле, вызываемое разделением зарядов. В холодной плазме (Tg = Ti) ленгмюровские колебания не обладают дисперсией, т. в. П. ч. Шр не зависит от длины волны. Подробнее см, в ст. Волны в плазме. ПЛАЗМЕННАЯ ЭЛЕКТРОНИКА — раздел физики плазмы, изучающий коллективные взаимодействия плотных потоков (пучков) заряж. частиц с плазмой и газом, приводящие к возбуждению в системе линейных и нелинейных эл.-магн. вола и колебаний, и использование эффектов такого взаимодействия. Прикладные задачи, к-рые ставит и решает П. э., определяют её осн, разделы плазменная СВЧ-электроника, изучающая возбуждение в плазме интенсивного когерентного эл.-магн. излучения, начиная от радио-и вплоть до оптич. диапазона длин вола плазменные ускорители, осн. на явлении коллективного ускорения тяжёлых заряж. частиц электронными пучками и волнами в плазме плазменно-пучковый разряд, основанный на коллективном механизме взаимодействия плотных п.уч-кон заряж. частиц с газом турбулентный нагрев плазмы плотными пучками заряж. частиц и коллективные процессы при транспортировке и фокусировке пучков в проблеме УТС (см. Ионный термоядерный синтез) неравновесная плазмохимия, изучающая процессы образования возбуждённых молекул, атомов и ионов при коллективном взаимодействии пучков заряж. частиц с газом и плазмой.  [c.606]


Смотреть страницы где упоминается термин Электронные эффекты нелинейные : [c.58]    [c.510]    [c.510]    [c.91]    [c.174]    [c.29]    [c.131]    [c.187]    [c.342]    [c.58]    [c.183]    [c.22]    [c.57]    [c.227]    [c.249]    [c.55]    [c.324]    [c.582]    [c.446]    [c.159]    [c.294]    [c.295]   
Введение в нелинейную оптику Часть1 Классическое рассмотрение (1973) -- [ c.25 , c.108 , c.162 ]



ПОИСК



Электронно-колебательные типы.— Электронно-колебательный момент количества движения.— Электронно-колебательное взаимодействие (эффект Реннера — Теллера) в синглетных электронных состояниях,— Электронно-колебательное взаимодействие в дублетных состояниях.— Электронно-колебательное взаимодействие в триплетных состояниях Вырожденные электронные состояния нелинейные молекулы

Электронные эффекты



© 2025 Mash-xxl.info Реклама на сайте