Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Частота ленгмюровская

Впервые наличие колебаний в плазме было установлено в 1906 г. Рэлеем и независимо в 1929 г. И. Ленгмюром, получившим формулу (10.87) для частоты oq (которая поэтому называется ленгмюровской частотой колебаний плазмы).  [c.220]

Различают продольно и поперечно поляризованные волны в зависимости от ориентации вектора поля относительно волнового вектора (к). В электродинамике примером продольных волн служат плоские однородные плаз.менные волны (с.ч. Ленгмюровские волны) к поперечным волнам в первую очередь относятся плоские однородные эл.-магн. волны в вакууме или в однородных изотропных средах. Поскольку в последних электрич. (В) и магн. (Н) векторы перпендикулярны волновому вектору (к), то их часто паз. волнами типа ТЕМ или ТЕП (см. Волновод). Причём, если векторы поля (Е, Н) лежат в фиксиров. плоскостях (Е, к) и (Н, к), т. е. имеют фиксиров. направления в пространстве, используется термин волны линейной поляризации . Суперпозиция двух линейно поляризованных волн, распространяющихся в одном направлении (к) и имеющих одинаковую частоту (а), но отличающихся направ лени остью векторных полей, даёт в общем случае волну эллиптической поляризации. В ией концы векторов Е и Н описывают в плоскости,  [c.65]


Комплексная диэлектрическая проницаемость плазмы определяется известной формулой 1 — (o)i V) +/ttg/fe, где (О — частота лазерного излучения, k — волновое число, ol — Ленгмюровская (плазменная) частота Из приведенной формулы  [c.175]

ПЛАЗМЕННАЯ ЧАСТОТА — частота ленгмюровских колебаний, называемых также плазменными колебаниями и продольными (к II Е) колебаниями пространственного заряда Юр = У4лпе /т , п — плотность, е и — заряд и масса электрона, к — волновой вектор, Е — электрич. поле, вызываемое разделением зарядов. В холодной плазме (Tg = Ti) ленгмюровские колебания не обладают дисперсией, т. в. П. ч. Шр не зависит от длины волны. Подробнее см, в ст. Волны в плазме. ПЛАЗМЕННАЯ ЭЛЕКТРОНИКА — раздел физики плазмы, изучающий коллективные взаимодействия плотных потоков (пучков) заряж. частиц с плазмой и газом, приводящие к возбуждению в системе линейных и нелинейных эл.-магн. вола и колебаний, и использование эффектов такого взаимодействия. Прикладные задачи, к-рые ставит и решает П. э., определяют её осн, разделы плазменная СВЧ-электроника, изучающая возбуждение в плазме интенсивного когерентного эл.-магн. излучения, начиная от радио-и вплоть до оптич. диапазона длин вола плазменные ускорители, осн. на явлении коллективного ускорения тяжёлых заряж. частиц электронными пучками и волнами в плазме плазменно-пучковый разряд, основанный на коллективном механизме взаимодействия плотных п.уч-кон заряж. частиц с газом турбулентный нагрев плазмы плотными пучками заряж. частиц и коллективные процессы при транспортировке и фокусировке пучков в проблеме УТС (см. Ионный термоядерный синтез) неравновесная плазмохимия, изучающая процессы образования возбуждённых молекул, атомов и ионов при коллективном взаимодействии пучков заряж. частиц с газом и плазмой.  [c.606]

Закон дисперсии в рассматриваемом приближении таков, что циклическая частота колебаний о не зависит от волнового вектора и равна постоянной ленгмюровской частоте. Это указывает на аномально сильную дисперсию колебаний электронной плазмы, именно такую, что величина групповой скорости равна нулю, -г. е. колебания в этом случае не распространяются. Созданная электронная макроскопическая неоднородность в плазме не ре-даксирует, как в обычном газе, а вибрирует (не распространяясь) с большой частотой гоо=5-10 с при =10 м ).  [c.131]

Затухание волн в однородных В. п. определяется столкновениями частиц и Ландау затуханием. Столкно-вит. затухание практически одинаково и в В. н., и в неогранич, плазме, Зат.ухание Ландау поверхностных волн может быть значительно бодыпе, чем объёмных при тех же условиях, что связано с сильно11 неоднородностью поля поверхностных волн у границы. В В. п, с размытыми границами появляется дополнит, затухание поверхностных волн. Поскольку частота поверхностных волн меньше Й/ в однородной плазме, то в переходной области всегда найдётся точка у , в к-рой 2t ( /(,)= ш. В окрестности этой точки поверхностная волна возбуждает ленгмюровскую, а сама затухает.  [c.310]


В. в п. в отсутствие магнитного поля. В отсутствие внешних электрич. и магн. полей ( 0 = 0, Яа=0) в изотропной холодной плазме существуют две моды собств. колебаний продольные и поперечные волны. (Диэлектрич, проницаемость плазмы е в отсутствие внеш. полей является скаляром.) Причиной продольных колебаний (J f ), наз. ленгмюров-с к и м и (плазменными колебаниями или волнами пространственного заряда), является электрич, иоле, вызываемое разделением зарядов. Частота этих колебаний не зависит от длины волны, т, е. нет дисперсии этих волн, и равна ленгмюровской частоте 1лектронов lXl = a) ,(,= Здесь п — плотность равновесной  [c.328]

В холодной (Г О) плазме в магн. поле F 0) могут наблюдаться пять ветвей колебаний (рис. 2). В случае распространения волн вдоль магн. иоля (/с li Нц) имеются одна мода продольных волн (ленгмюровские колебания) и четыре моды поперечных эл.-магн. колебаний, существующие в разных диапазонах частот (альвеновская, быстрая магнитозвуковая, обыкновенная и необыкновенная волны).  [c.329]

ЛАНДАУ ЗАТУХАНИЕ (бесстолкновительное затухание) — состоит в том, что волновое возмущение в плазме затухает по мере распространения, несмотря на отсутствие парных столкновений. Л. з. в равновесной плазме обусловлено резонансным поглощением энергии волны частицами, скорости к-рых в направлении распространения волны близки к её фазоввй скорости ф=ш к (к — волновой вектор, со — частота волны). Вследствие Л. з, амплитуда волны Е (<) убывает по экспоненциальному закону (<)—где — декремент Л. 3. Для ленгмюровских волн определяется ф-лой  [c.572]

Оптические свойства. Для эл.-магн. воли оптпч. диапазона М., как правило, непрозрачны. Характерный блеск — следствие практически полного отражения света поверхностью М., обусловленного тем, что диэлектрическая проницаемость электронного газа 8 при оптич. частотах отрицательна. Диэлектрич. проницаемость М. е = Ей — о) ,/со , где ей — диэлектрич. проницаемость ионного остова, — плазменная (ленгмюровская) частота электронов. Плазменные частоты могут быть экспериментально определены по характеристич. потерям энергии быстрых электронов (с энергией при прохождении через металлич. плёнку. Они теряют энергию на возбуждение плазмонов — квантов колебаний электронной жидкости с частотой ljl (табл. 8),  [c.119]

Интересными особенностями обладают Н. я. в п., связанные с фазовой памятью частиц, напр. явление плазменного эха. Суть его состоит в следующем. Возбуждённая в к.-л. точке пространства ленгмюровская волна затухает при распространении вследствие затухания Ландау. В любой точке, где первая волна уже затухла, возбудим на другой частоте другую волну, к-рая также затухнет на определ. расстоянии. После затухания первой и второй волн через определённые пространственные интервалы можно наблюдать вспышки ВЧ-колебаний на комбинац. частотах, это и наз. плазменным эхом. Появление эха можно пояснить на простом примере. Если в точке г — О внеш. источником возбуждается электрич. поле с частотой oi tOj (напр., с шмощью сетки), то это поле модулирует тепловые патоки частиц так, что ф-ция распределения электронов пропорциональна б/i exp[ i ji(i — з/е) . Такое распределение электронов создаёт эле1 трич. поле лишь в районе г = О и нуль во всём остальном пространстве. Если в точке z — d стоит аналогичная сетка, модулирующая потоки частиц с другой частотой (Oj > соо, тогда б/а ехр гсОг[< — (г — d)lv . Здесь также из-за быстрых осцилляций ф-ции распределения поле всюду, кроме z — d. отсутствует. Однако нелинейный отклик ф-ции распределения, который пропорционален б/ -б/з, даёт ненулевое поле в точке Z — —(Oj), т. к. здесь зависимость от скорости  [c.317]

В однородных безграничных средах Н. в. принято наз. однородные плоские волны, распространяющиеся в произвольных направлениях. В изотропных средах волновое число не зависит от направления распространения, а поляризация поперечных волн может быть произвольной (двукратное поляризац. вырождение). В анизотропных и гиротропных средах зависит ох ваправления распространения, а поляризац. вырождение снимается (соответственно различают обыкновенные и необыкновенные Н. в.). На рис. 1 приведены дисперсионные ветви Н. в. в изотропной неизотермич. плазме. Частотные спектры поперечных эл.-магн. и ленгмюровских волн ограничены снизу электронной плазм, частотой сор , спектр ионно-звуковых волн ограничен сверху ионной плазм, частотой сор, значения частот и волновых чисел, ограничивающих дисперсионную ветвь, наз. критическими для данной моды.  [c.361]


Для нестационарных процессов, характерные времена к-рых значительно больше обратных величин ионной циклотронной и ленгмюровской частот, соотношение (1) обобщается добавлением в левую часть слагаемого 1Пд1е п)д)1(и.  [c.406]

Помимо хаотич. теплового движения частицы П. могут участвовать в упорядоченных коллективны.х процессах, из к-рых наиб, характерны продольные колебания пространствейного заряда — ленгмюровские волны. Их угл. частота сОр = лпе /т наз. плазменной частотой (сит— заряд и масса электрона). Многочисленность и разнообраэие коллективных процессов, отличающие плазму от нейтрального газа, обусловлены дальностью кулоновского взаимодействия, благодаря чему П. можно рассматривать как упругую среду, в к-рой легко возбуждаются и распространяются разл. шумы, колебания и волны. Наличие собств. колебаний и волн — Характерное свойство П.  [c.595]

П. т. т., как и газовая плазма, в среднем электрически нейтральна из-за компенсации зарядов разных знаков вследствие временны-х флуктуаций плотности электрич. заряда в ней возникают плазменные или ленгмюровские колебания электронов, частота к-рых (для предельно длинных волн) определяется ф-лой (см. Воаны в плазме)  [c.600]

Отличия и достоинства П. э. Подобно вакуумной и квантовой электронике П. э. основана на явлении индуцированного (вынужденного) излучения и поглощения эл.-магн. волн заряж. частицами в плазме. Но если вакуумная электроника рассматривает излучение потоков заряж. частиц, движущихся в электродинамич. структурах — металлич, либо диэлектрич. волноводах и резонаторах, то П. э. исследует излучение потоков заряж. частиц, движущихся в плазме, в плазменных волноводах и резонаторах (см. Волновод плазменный). Частота эл.-магн. излучения в вакуумной электронике определяется конечными геом. размерами волноводов и резонаторов, а в квантовой электронике — дискретностью энергетич. уровней излучателей (возбуждённых атомов и молекул) поэтому генераторы когерентного эл.-магн. излучения в вакуумной и в квантовой электронике узкополосны, менять их частоту плавно практически невозможно. В плазменных приборах частота зависит не только от геом. размеров волноводов и резонаторов, но и от п.чотности плазмы, поэтому излучатели в П. э. многомодовые меняя плотность плазмы, можно менять частоты в широком интервале.В этом заключается одно из существ, отличий и преимуществ П. э. Так, напр., частота продольных ленгмюровских колебаний холодной изотропной плаз.мы (в систе.ме ед. СС8Е) Шр = (3-10 Нр) / С", где Пр — плотность плазмы. При изменении реально используе.мой плотности плазмы в пределах (10 °—Ю ) см" можно возбуждать волны длиной X (10" —10 ) см, что перекрывает всю полосу СВЧ от субмиллиметрового и до дециметрового диапазона. При наложении на плазму внеш. магн. поля диапазон частот собств. мод эл.-магн. колебаний плазмы расширяется.  [c.607]

Здесь (й(> 1 3-10 /ij, —- ленгмюровская частота электронов лучка (beam), — плотность, и — скорость пучка, к — волновой вектор, ю — комплексная частота, действнт. часть к-рой представляет частоту возбуждённых продольных колебаний поля, а мнимая часть — инкремент нарастания их амплитуды.  [c.607]

Доля а энергии пучка, трансформируемая в энергию ленгмюровских колебаний, зависит от первонач. разброса скоростей электронов пучка Да и от длины Ь взаимодействия пучка с плазмой. Наиб, значения а (а 1) реализуются для достаточно размытого пучка Дг/у > (п п)Ча при L > ( iт/Фoв) т/ l)( / i )Л Здесь и X — скорость и концентрация электронов в пучке, Ут и я — средняя скорость и концентрация тепловых электронов, свое 1кн.пе 1т — ленгмюровская частота, Л — кулоновский логарифм.  [c.609]

Др. важное отличие плазмеввых проводников от конденсированных заключается в том, что большинство плазменных образований существуют при условии, что через них протекает ток. Таковы классич. электрические разряды в газах, плазма в плазменных ускорителях, тока-маках и др. При изменении тока плазменная структура (конфигурация) плавно или скачкообразно изменяется, в ней могут в широком диапазоне частот развиваться колебания (от акустических до ленгмюровских), на электродах возникать привязки и т. п. Около электродов, помещённых в плазму, обычно возникают при-электродные слон, падение потенциала на к-рых может существенно превосходить падение потенциала в осн. части плазменного объёма (найр., в тлеющем разряде). По этой причине для большинства плазменных систем особое значение имеют не дифференциальные, типа (1), а интегральные характеристики П. п. Для стационарных систем это, в первую очередь, волът-амперные характеристики  [c.132]

Универсальность спектра Колмогорова—независимость от источника энергии — является в определ. степени специфич. свойством, присущим Т. в простых средах, напр, в нейтральных жидкостях, в к-рых отсутствует характерный внутр. масштаб. В более сложных средах, нагр. в плазме, Т.— результат взаимодействия разд. полей и/или возбуждений с разными характерными частотами, масштабами и полосами поглощения (см. Турбулентность плазмы). Кроме того, существенными могут оказаться нелинейные механизмы диссипации — коллапс ленгмюровских воли в плазме (см. Волновой коллапс), обрушение внутренних волн или волн на поверхности жидкости и т. п. В такой ситуации простые модели типа икери. интервала и передачи энергии от крупномасштабных движений к мелкомасштабным неприменимы, а одних только соображений размерности недостаточно для получения результатов в замкнутом виде. Степенные спектры в подобных ситуациях также возможны, но при определ. ограничениях, напр, если выполнены условия возбуждения лишь одного типа волн. Для слабой Т. такие спектры в приближении случайных фаз могут быть получены из кинетич. ур-ний для волн. Примером является спектр Захарова — Филоненко для капиллярных волн, к-рый также соответствует инерц. интервалу.  [c.181]

Величина сор играет фундаментальную роль в физике плазмы она носит название плагменной частоты, или ленгмюровской частоты электронов. Ее характерная особенность состоит в том, что она пропорциональна корню квадратному из плотности.  [c.79]


Решение. Поскольку эффективная частота столкновений электроноп с ионами Vзфф мала по сравнению с электронной ленгмюровской частотой, то и соответствующее затухание колебаний относительно невелико. Поэтому его можно получить как аддитивную независимую добавку к затуханию, обусловленному эффектом Черенкова. Тогда, пренебрегая зависимостью диэлектрической проницаемости от волнового вектора, согласно формулам (39.8) и (39.10)  [c.144]

В целом ряде случаев записимость частоты плазменных колебаний значительно менее существенна, чем соотлетствующая зависимость инкремента. Такоо положение обусловлено тем, что частоты плазменных колебаний определяются сравнительно медленно изменяющимися параметрами, определяющими распределения частиц. Так, в случае электронных ленгмюровских и в случао ионнозвуковых колебаний частоты плазменных ко.пебапий являются плавными функциями плотности числа частиц и их температуры. Напротив, инкременты (так же как и декременты) колебаний часто определяются малыми группами резонансных частиц, перераспределение которых, возникающее в результате взаимодействия с  [c.259]


Смотреть страницы где упоминается термин Частота ленгмюровская : [c.376]    [c.264]    [c.599]    [c.131]    [c.309]    [c.267]    [c.310]    [c.108]    [c.412]    [c.412]    [c.414]    [c.313]    [c.598]    [c.598]    [c.258]    [c.596]    [c.161]    [c.647]    [c.647]    [c.647]    [c.648]    [c.648]    [c.107]    [c.240]    [c.291]    [c.294]    [c.20]   
Термодинамика (1991) -- [ c.220 ]



ПОИСК



Плазменная (ленгмюровская) частот



© 2025 Mash-xxl.info Реклама на сайте