Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия диэлектрика

При втором способе расчета работы поляризации соответственно должно измениться содержание понятия внутренняя энергия системы . В этом случае внутренняя энергия должна включать в себя потенциальную энергию диэлектрика в электрическом поле, т. е.  [c.161]

Изменение внутренней энергии диэлектрика во время его поляризации при постоянных температуре и объеме можно найти из уравнения Гиббса — Гельмгольца (5.31), в котором внешний параметр a = D  [c.191]


Этот результат не является неожиданным. Из электродинамического определения энергии поля видно, что величина е /(8т1) является не энергией, а свободной энергией поля в диэлектрике. Как показывают соотношения (10.25), она как раз совпадает со свободной энергией поляризованного диэлектрика. Внутренняя же энергия поля в термодинамическом смысле совпадает с внутренней энергией диэлектрика в поле (10.27). Легко видеть, что интегрирование уравнения (10.22) для dU при заданных энтропии и объеме не дает для изменения энергии диэлектрика с линейной связью П = гЕ величины D /(8ne)  [c.192]

Подобно этому, соотношения (10.28" ) возникают потому, что, в то время как F(T, D) определяет изменение. свободной энергии диэлектрика (или изменение свободной энергии поля в диэлектрике) за счет положительной работы внешних источников, перемещающих заряды в поле, выражение F T, Е) определяет изменение свободной энергии диэлектрика (или изменение свободной энергии поля в диэлектрике) при создании поля в диэлектрике с учетом работы против внешних источников.  [c.193]

При расчетах с помощью этого соотношения необходимо иметь в виду,, что внутренняя энергия диэлектрика изменяется с изменением напряженности электрического поля это обстоятельство необходимо учитывать и при расчетах с помощью соотношения (4-67) — величина входящая в состав ij,i изменяется с изменением поляризации Р.  [c.97]

Электростатическая энергия диэлектрика (в дж) по определению равна интегралу J DE dv, а в переменном гармоническом  [c.209]

Аналогично в качестве свободной энергии диэлектрика трической проницаемостью е в электрическом поле использовать функцию  [c.175]

Здесь Р Т, 0) — свободная энергия всего диэлектрика в отсутствие электрического поля. Второе слагаемое представляет собой сумму изменения свободной энергии диэлектрика прп его поляризации электрическим полем и энергию его взаимодействия с полем, а третье слагаемое — энергию электрического поля. При возрастании X свободная энергия уменьшается, так что диэлектрик втягивается в конденсатор с силой  [c.197]

Обратимое поглощение энергии диэлектриком при создании электрического поля связано с определенным состоянием, которое характеризуется изменением формы орбит электронов в атомах или ионах (в зависимости от структуры диэлектрика). В электрическом поле электроны будут испытывать притяжение со стороны положительных зарядов одного из электродов, и отталкивание со стороны отрицательных зарядов другого, в силу чего произойдет некоторое смещение их по направлению к положительному электроду. Это смещение электронов внутри атомов N / Л или ионов называется электронной у поляризацией. Она превращает каждый атом или ион в диполь, так как центры положительного и отри-  [c.24]


Обратимое поглощение энергии диэлектриком при создании электрического поля связано с определенным состоянием, которое характеризуется изменением формы орбит электронов в атомах или ионах (в зависимости от структуры диэлектрика). В электрическом поле электроны будут испытывать притяжение со стороны положительных зарядов одного из электродов и отталкивание со стороны отрицательных зарядов другого, в силу чего произойдет некоторое сме- о  [c.17]

Пространственно-частотные перестановочные соотношения позволяют найти нелинейную часть средней по времени плотности свободной энергии диэлектрика  [c.289]

Дальнейшим подтверждением существования ионного вклада в теплоемкость служат свойства диэлектриков. Если бы теория статической решетки была совершенно точной, то тепловая энергия диэлектрика отличалась бы от ее значения при Г = О лишь за счет того, что часть электронов в результате теплового возбуждения преодолевала бы энергетическую щель Е . Можно показать (гл. 28), что при температурах ниже Ед/к (т. е. при всех интересующих нас температурах, если Eg достигает 1 эВ) число возбужденных электронов изменяется с температурой пропорционально Той же экспонентой определяется зависимость теплоемкости = йи йТ от температуры. Однако наблюдаемые теплоемкости диэлектриков при низких температурах изменяются с температурой не по экспоненциальному закону, а как Г . И в диэлектриках, и в  [c.46]

Если справедливо предположение о малых колебаниях, то внутренняя энергия диэлектрика должна с хорошей точностью определяться выражением (23.11), полученным в гармоническом приближении  [c.117]

Диэлектрики излучают в соответствии с законом Ламберта в более широкой области значений угла <р. Экспериментально установлено, что для диффузного излучения этот закон соблюдается до углов в 70°. В связи с тем, что у диэлектриков отклонение от закона Ламберта проявляется при достаточно больших углах ср, т. е. в направлениях, в которых количество излучаемой энергии невелико, при расчетах эти отклонения могут не учитываться. На рис. 1-9 [17] приведены графики изменения степени черноты при изменении угла излучения от о до 90° (индикатрисы) для ряда материалов.  [c.26]

ВОДНОСТЬ мала, лучистая энергия проникает глубоко и основная ее доля поглощается. Отражательная способность диэлектриков мала.  [c.28]

Действительно, уменьшение излучательной способности будет не беспредельно и, достигнув определенной величины, вновь начнет возрастать. Об этом свидетельствуют многие экспериментальные данные по степени черноты, полученные в зависимости от температуры для ряда тугоплавких соединений. Объяснение такого рода дает классическая электродинамика, рассматривающая излучение как результат взаимодействия электромагнитной волны с веществом. Если сообщить металлу и диэлектрику одинаковое количество тепловой энергии, то в металле энергия расходуется на возбуждение электронов и, следовательно, ведет к росту интенсивности излучения в диэлектрике часть энергии идет на изменение величины дипольного момента, т. е. наблюдается относительное уменьшение излучательной способности. Такой  [c.66]

Первое слагаемое этого выражения, в соответствии со смыслом слагаемых в (19.3), выражает работу возбуждения электрического поля в вакууме, а второе слагаемое — это собственно работа поляризации диэлектрика. Поэтому если энергия электрического поля в вакуумированном объеме системы, V6 j8n,, считается входящей во внутреннюю энергию ее, т. е. U = - =U+V6 /8it, то работа электризации должна записываться в виде (19.1), если же этого добавления к U нет, то надо учитывать только чистую работу поляризации, т. е.  [c.160]

В отличие от металлов в полупроводниках и диэлектриках также возникает так называемый внутренний фотоэффект, состояш,ий в возбуждении электронов из валентной зоны в зону проводимости. Для внутреннего фотоэффекта энергия поглощенного светового кванта не должна быть меньше ширины запрещенной зоны (разность энергии между нижней границей зоны проводимости и верхней границей валентной зоны).  [c.345]


Собственная проводимость полупроводников. Обычно к полупроводникам относят кристаллы, в которых для освобождения электрона требуется энергия не более 1,5—2 эВ. Кристаллы с большими значениями энергии связи относятся к диэлектрикам.  [c.154]

Выражение (1.26) означает, что поток энергии сквозь замкну тую поверхность а, охватывающую произвольный объем диэлектрика V, равен изменению электромагнитной энергии внутри этого объема. Аналогичное соотношение, справедливое для любого вида энергии, было получено Умовым. Специально для потока электромагнитной энергии этот закон был впервые доказан Пойнтингом.  [c.40]

Итак, при падении света на границу двух диэлектриков под углом Брюстера отраженная волна полностью поляризована, тогда как преломленная волна оказывается частично поляризованной. Изучение графиков для коэффициентов отражения и пропускания (см. рис. 2. 13) показывает, что при ф = ф р поток отраженной энергии невелик, а главная его часть распространяется в направлении преломленной волны. Поэтому для получения поляризованного света выгодно многократно преломить падающий под углом Брюстера свет, каждый раз увеличивая степень его поляризации. Расчет показывает, что при ф == фвр стопа из 10 стеклянных пластинок дает степень поляризации преломленной волны, близкую к 100%. При этом интенсивность прошедшей радиации заметно больше, чем в отраженной волне. Такой компактный прибор удобен и прост в изготовлении. Он  [c.89]

При формулировке основных положений теории необходимо прежде всего учесть наличие поглощения электромагнитной волны, которое ранее никак не учитывалось. При рассмотрении явлений на границе двух диэлектриков мы исходили из соотношения + = 1 И считали, что сумма потоков энергии для отраженной и преломленной волн равна потоку падающей энергии.  [c.100]

Теплопроводность диэлектриков. В общем случае в твердых телах имеют место два основных механизма переноса теплоты перенос тепловой энергии свободными электронами и перенос тепловой энергии атомными колебаниями. В металлах действуют оба механизма одновременно.  [c.187]

Сначала рассмотрим механизм распространения теплоты атомными колебаниями в диэлектриках, в которых свободных электронов практически нет. Так как атомы в твердом теле связаны между собой, то при нагревании какого-либо участка тела амплитуда колебаний атомов этого участка увеличивается и атомы при своем движении толкают соседние атомы, которые, в свою очередь, передают это движение своим соседям и т. д. Кинетическая энергия колебаний атомов переносится, таким образом, от нагретого участка к более холодному. Макроскопически поток кинетической энергии атомов выглядит как тепловой поток. Этот процесс одинаков с процессом распространения упругих звуковых волн в твердом теле.  [c.187]

В отличие от диэлектриков, где длина свободного пробега фононов при низких температурах, в основном, определяется размерами образца, Б металлах длина свободного пробега электронов при этих температурах определяется дефектами и примесями. Это связано с тем, что энергия электронов (вблизи энергии Ферми), переносящих теплоту, слабо зависит от температуры [формула (6.57)]. Длина волны де Бройля Х=И/(mv ) таких электронов — порядка средних межатомных расстояний, поэтому электроны сильно рассеиваются на дефектах атомных размеров и средняя длина свободного пробега <Хэл> ограничена этими размерами.  [c.196]

Если ширина запрещенной зоны меньше 2—3 эВ, то кристалл называют полупроводником. В полупроводниках за счет тепловой энергии квТ заметное число электронов оказывается переброшенным в свободную зону, называемую зоной проводимости. При очень низких температурах любой полупроводник становится хорошим диэлектриком.  [c.230]

Из всего многообразия физических свойств важнейшими свойствами, характеризующими вещество как диэлектрик, являются электрические — поляризация, электропроводность, диэлектрические потери и т. д. Многие годы диэлектрики применялись в основном как изоляторы. Поэтому наибольшее значение имели их малые электропроводности и диэлектрические потери, высокая электрическая прочность. В современных условиях диэлектрики используют не только в качестве пассивных элементов различных электрических схем. С их помощью осуществляют преобразование механической и тепловой энергии в электрическую (пьезоэлектрики и пироэлектрики). Ряд диэлектриков находит применение для детектирования, усиления, модуляции электрических и оптических сигналов. При этом важную роль играют такие свойства, как фотоэффект, электрооптические и гальвано-магнитные явления.  [c.271]

Если к диэлектрику приложены слабые электрические поля (в области выполнения закона Ома), то они не могут изменить ни концентрации, ни подвижности носителей заряда. Значения величин п и 1, таким образом, остаются весьма низкими, и вклад электронной проводимости незначителен. В сильных электрических полях ситуация резко меняется. Энергии электрического поля. может быть достаточно для освобождения полем электронов (или дырок) из связанного состояния. Вследствие этого возрастает подвижность носителей заряда. Кроме того, из-за ударной ионизации резко увеличивается и концентрация освобожденных электронов в зоне проводимости (или дырок в валентной зоне). Все это приводит к росту электронной проводимости.  [c.274]

Наложение внешнего однородного поля вдоль оси л изменяет зависимость U(x). Потенциальная энергия иона в этом поле должна изменяться с расстоянием линейно. Таким образом, кривая V (х) представляет собой результат наложения зависимости, изображенной на рис. 8.5, и наклонной прямой (рис. 8.6). Из рис. 8.6 следует, что вероятность перескока иона из положения / в положение 2 увеличивается, а вероятность обратных перескоков уменьшается. Это происходит потому, что за счет наложения поля потенциальный барьер в первом случае уменьшается на AL/, а во-втором — увеличивается на AU. Если заряд иона равен е, то AU= =еЕд/2. Естественно, что число перескоков в единичное время в направлении J- 2 теперь больше, чем в обратном направлении. В результате этого в диэлектрике устанавливается асимметричное распределение зарядов, т. е. создается некоторый дипольный момент.  [c.285]


Более строгий расчет дипольной тепловой поляризации был предложен Дебаем. Следуя Дебаю, рассмотрим диэлектрик, содержащий N диполей Ро- Пусть диполь направлен под углом 0 к полю (рис. 8.8). Тогда Ро os 0 — составляющая дипольного момента полярной молекулы в направлении поля. Потенциальная энергия диполя в электрическом поле  [c.289]

Потерями называют ту часть электрической энергии, которая превращается в диэлектрике в теплоту. Поскольку диэлектрики обладают некоторой проводимостью (хотя и очень незначительной), в них выделяется джоулева теплота даже в постоянном электрическом поле. Однако под действием переменного электрического поля диэлектрики обычно нагреваются значительно сильнее, чем  [c.301]

Экситонное поглощение. До сих пор мы рассматривали поглощение света, приводящее к образованию свободных электронов и дырок. Однако возможен и другой механизм поглощения, при котором электрон валентной зоны переводится в возбужденное состояние, но остается связанным с образовавшейся дыркой в водородоподобном состоянии. Энергия образования такого возбужденного состояния, называемого экситоном, меньше ширины запрещенной зоны, поскольку последняя есть не что иное, как минимальная энергия, требуемая для создания разделенной пары. Экситон может перемещаться в кристалле, но фотопроводимость при этом не возникает, так как электрон и дырка движутся вместе. Экситоны могут достаточно легко возникать в диэлектриках, так как D них кулоновское притяжение электрона и дырки значительно. В полупроводниках это притяжение мало и поэтому энергия связи экситона также мала. Вследствие этого экситонные орбиты охватывают несколько элементарных ячеек кристалла (радиус орбиты -"15 нм). В металлах экситонное поглощение очень маловероятно.  [c.310]

Примесное поглощение наблюдается в полупроводниках и диэлектриках, содержащих примесные атомы. В этом случае поглощение света связано с возбуждением примесных центров или с их ионизацией. Например, в материале л-типа электроны с донорных уровней могут быть возбуждены в зону проводимости. Если доноры (или акцепторы) вносят в запрещенную зону мелкие уровни, то наблюдать примесное поглощение можно лишь при достаточно низких температурах. Действительно, в области высоких температур все эти уровни ионизованы за счет термического возбуждения. Так как энергия ионизации примесных уровней меньше, чем энергия, требуемая для перевода электронов из валентной зоны в зону проводимости, то полосы примесного поглощения лежат за краем собственного поглощения.  [c.312]

Поглощение света кристаллами определяет окраску последних. Например, многие диэлектрики при комнатной температуре оптически прозрачны. Эта прозрачность обусловлена отсутствием в них электронных или колебательных переходов в видимой области спектра. Видимая область простирается от 740 до 360 нм, что соответствует интервалу энергий от 1,7 до 3,5 эВ. Этой энергии излучения недостаточно для перевода электронов из валентной зоны в зону проводимости (если ширина запрещенной зоны больше 3,5 эВ). Так, например, чистые кристаллы алмаза, имеющие ширину запрещенной зоны 5.2 эВ, являются прозрачными. Однако 312  [c.312]

Задача отыскания результирующего магнитного момента в магнитном поле совершенно аналогична задаче о нахождении электрического дипольного момента диэлектрика, содержащего диполи в электрическом поле. Энергия магнитного диполя М в магнитном поле с индукцией В  [c.325]

Рассмотренные нами представления позволяют перенести на аморфные вещества то объяснение различия между диэлектриками, полупроводниками и металлами, которое было дано в обычной зонной теории твердых тел. Если уровень Ферми лежит в области нелокализованных состояний, то вещество представляет собой металл. Его сопротивление при 7- 0 К стремится к некоторому конечному значению. Если же уровень Ферми при низких температурах находится в интервале энергии, занятом локализованными состояниями, то материал представляет собой полупроводник или диэлектрик. Здесь возможны два типа проводимости  [c.359]

Аморфные диэлектрики в виде тонких пленок находят широкое применение в микроэлектронике. Во многих таких диэлектриках,, так же как и в аморфных полупроводниках, проводимость (весьма незначительная ) осуществляется путем перескоков из одного локализованного состояния в другое. Энергия активации этого процесса значительно ниже, чем энергия активации примесной проводимости в кристаллических диэлектриках.  [c.371]

При отсутствии поглощения, что приближенно справедливо для многих диэлектриков, Е + Т=1. Это равенство следует из закона сохранения энергии.  [c.17]

При формулировке основных положений теории необходимо в первую очередь учесть поглощение электромагнитной волны, чего мы не делали при рассмотрении диэлектриков, предполагая, что сумма потоков энергии для отраженной и преломленной волн всегда равна потоку падающей энергии. Однако любая среда в большей или меньшей степени поглощает электромагнитное излучение, что ведет к затуханию электромагнитной волны, амплитуда которой будет постепенно уменьшаться. Для волны, распространяющейся вдоль оси 2, в слое малой толщины 2 поглощается определенная часть падающего света, пропорциональная толщине слоя (И——кМг. В соответствии с этим интенсивность света убывает по мере проникновения в поглощающую среду по закону  [c.26]

Внутренний фотоэффект. При облучении светом некоторых полупроводников или диэлектриков оптические электроны отдельных атомов кристаллической решетки вещества, приобретая достаточную дополнительную энергию, отрываются от атомов и превращаются в электроны проводимости. Так как проводимость полупроводников и диэлектриков обычно мала, то появление в них электронов проводимости ведет к заметному повышению их электропроводности, а следовательно, и к уменьшению их сопротивления. Это явление и называется внутренним фотоэффектом, или фотопроводимостью.  [c.168]

Если Еп = Е , где , — энергия ионизации, то когда энергия суммы фотонов Nhv достигнет величины, превышающей произойдет ионизация атома, т. е. оптический электрон оторвется от атома. Это явление носит название многофотонной ионизации. Так, например, наблюдалась ионизация атома гелия (потенциал ионизации 24,58 эВ) в результате поглощения 21 фотона излучения неодимового лазера (5. = 1,06 мкм), В такого рода опытах применяется сфокусированное излучение мощных импульсных лазеров. При этом напряженность электрического поля составляет 10 —10 В/см. Если ионизация происходит в газе или конденсированном диэлектрике, то при очень большой плотности энергии может возникнуть искровой пробой среды электрическим полем излучения лазера.  [c.312]

Металлы, диэлектрики, полупроводники. Металлы и диэлектрики существенно различаются характером заполнения энергетических зон электронами. На рис. 6.11 заполненным электронным состояниям отвечает двойная штриховка, а свободным — однократная. Случай а относится к металлу, б—к диэлектрику. В последнем случае свободная зона — это зона проводимости, а полностью заполненная — валентная зона. Хотя обобществленные электроны и перемещаются по кристаллу, однако для электропроводимости этого мало надо, чтобы носители заряда обладали также некоторой свободой перемещения по шкале энергии. Ведь для направленного переноса заряда нужна соответствующая составляющая скорости электронов, что связано с приращением энергии. Ясно, что в полностью заполненной зоне приращение энергии невозможно, поэтому в случае б на рисунке мы имеем диэлектрик.  [c.143]


Рассеяние носителей заряда. При направленном перемещении электрических зарядов во внешнем электрическом поле (дрейфе или диффузии) носители заряда на пути свободного пробега приобретают от электрического поля энергию. Эта энергия тратится при соударениях — взаимодействиях с молекулами и атомами вещества, которые находятся в состоянии теплового движе1)ия. Отдавая энергию при соударении, носитель заряда повышает интенсивность хаотического движения частиц вещества, следовательно, повышает температуру диэлектрика. По этой причине электропроводность увеличивает е", tg6 и р (мощность рассеяния энергии) диэлектрика, которые зависят от плотности протекающего через диэлектрик активного тока. Соответствующие формулы приведены в табл. 3.3. Из них следует, что электропроводность сказывается на величине tg6 и на коэффициенте потерь е" главным образом при низких частотах оба эти параметра убывают с частотой как 1/со. Удельная мощность потерь в этом случае сводится к мощности потерь при постоянном напряжении (р = = оЕ ). Таким образом, снижение с частотой е" и tg6 не означа-  [c.76]

Зонная структура твердого тела является результатом взаимодействия волновой функции электрона с рещеткой. Зонная структура позволяет найти частоты и направления, для которых волновая функция электрона может или не может проходить через решетку. Отражение электронной волны под углами Брэгга от кристаллографических плоскостей является идеально упругим и не вносит вклада в электрическое сопротивление. Для каждого кристалла и каждой электронной конфигурации условия Брэгга налагают определенные ограничения на направление волнового вектора и значения энергий, которые может принимать электронная волна. Эти ограничения в направлениях и значениях энергий приводят к появлению щелей в почти непрерывном спектре энергий и направлений. Именно эти щели (порядка 1 эВ для полупроводников и 5 эВ или больше для хороших диэлектриков) обусловливают сильнейшие различия между металлами, полупроводниками и диэлектриками (рис. 5.2). Для металлов характерно, что уровень Ферми оказывается внутри зоны, имеющей вакантные энергетические уровни. Полупроводники имеют полностью заполненную разрешенную зону. Ширина запрещенной зоны у них невелика, н поэтому ие большое число электронов при тепловом возбуждении может перейти в расположенную выше разрешенную зону. Диэлектрик отличается от полупроводника тем, что его запрещенная зона очень велика, и практически ни один возбужденный электрон не может ее преодолеть.  [c.190]

Имеются также разные возможности поляризовать диэлектрик. Один способ поляризации подразумевает постепенное возрастание напряженности поля, начиная от нулевого значения, в пространстве, занятом системой, например, из-за заряжения обкладок конденсатора, между которыми находится рассматриваемая система. При этом источник заряда производит работу на создание поля в вакууме и на поляризацию вещества, т. е. работа должна выражаться формулой (19.1) или (19.5). В другом способе поляризации — система вносится в имеющееся уже поле заданной напряженности. Помимо поляризации вещества в этом случае необходимо затратить работу на внесеине системы в поле. Электростатическая энергия системы, имеющей  [c.160]

По определению собственная энергия системы равна работе, которую нужно произвести, чтобы образовать эту систему из бесконечно малых элементов, первоначально находившихся на бесконечно больших расстояниях друг от друга. Рассмотрим собственную энергию сил тяготения — гравитационную энергию она всегда отрицательна, потому что силы тяготения являются силами притяжения и нужно произвести положительную работу против них, чтобы разделить, например, атомы, входяшие в состав звезды, удалив каждый атом в бесконечность. Собственная гравитационная энергия обычно определяется при решении задач небесной механики, относящихся к звездам и галактикам. Расчеты собственной электростатической энергии часто производятся в теории кристаллов — как диэлектриков, так и металлов.  [c.273]


Смотреть страницы где упоминается термин Энергия диэлектрика : [c.189]    [c.190]    [c.191]    [c.131]    [c.230]   
Термодинамика (1991) -- [ c.190 ]



ПОИСК



Диэлектрик

Диэлектрик в резонаторе с неидеальными стенками или излучением тело с ert генерирует энергию (во вспомогательной аадаче)

Потери энергии в диэлектриках

Свободная энергия диэлектрика

Химические свойства диэлектриков и воздействие на материалы излучений высокой энергии

Химические свойства диэлектриков и поведение их под возj действием излучений высокой энергии

Химические свойства диэлектриков и поведение их под воздействием излучений высокой энергии



© 2025 Mash-xxl.info Реклама на сайте