Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проводимость примесная

ПРОВОДИМОСТЬ ПРИМЕСНЫХ ПОЛУПРОВОДНИКОВ  [c.250]

С повышение.м температуры все большее количество атомов доноров отдают свои электроны в зону проводимости, примесные уровни постепенно исто-  [c.56]

Рис. 3.15. Зависимость относительной удельной электрической проводимости примесного кремния от температуры ао - удельная Рис. 3.15. Зависимость относительной <a href="/info/127211">удельной электрической проводимости</a> примесного кремния от температуры ао - удельная

Проводимость полупроводника можно увеличить добавлением атомов других элементов (легированием), в результате возникает примесная проводимость. Примесная проводимость может быть обусловлена электронами или дырками. При этом в одном и том же образце полупроводникового материала один участок может обладать / -проводимостью, а другой — -проводимостью. р-п-переход работает как выпрямитель, пропуская ток только из р-области в я-область. Полупроводниковый материал с -переходом называется диодом и используется для выпрямления переменного тока.  [c.92]

Энергия ионизации при образовании дырки мала (ю сравнению с германия или кремния. Энергетический уровень, образующийся вследствие наличия примеси, показан на рис. 5-1-5,б, В этом случае образуется примесный незаполненный уровень, расположенный на 0,01—0,05 эВ выше верхней границы заполненной зоны. Уже при температуре, близкой к нормальной, незаполненный примесный уровень захватывает электроны из заполненной зоны, при этом в последней образуется дырка, обусловливающая проводимость. Примесный уровень в полупроводниках п-типа имеет смысл назвать уровнем, который снабжает зону проводимости электронами, и потому его называют донорным уровнем, В противоположность такому уровню незаполненный примесный уровень, который захватывает электроны из заполненной зоны, носит название акцепторного уровня. Полупроводники, подобные показанному на рис. 5-1-5, называют дырочными полупроводниками (р-типа), так как носителями заряда, обусловливающего проводимость, служат дырки—места с положительным зарядом.  [c.311]

Если измерить проводимость примесного полупроводника с, то по формуле (1-3) легко вычислить концентрацию свободных электронов и, следовательно, концентрацию примесных атомов. Однако, как уже отмечалось, с увеличением концентрации примесей по-  [c.18]

В основе современного понимания проводимости металлов лежит идея Блоха [4, 5], что свободные электроны проходят через металл как плоские волны, модулированные некоторой функцией с периодом, равным периоду решетки. Это позволяет преодолеть противоречия простой теории электронного газа, согласно которой атомы решетки сами должны являться главными центрами рассеяния электронов проводимости В результате длина свободного пробега может достигать нескольких миллиметров, что и наблюдается при низких температурах в особо чистых металлах. Сопротивление металлов, согласно теории Блоха, обусловлено только неидеальностью решетки. Наличие примесных атомов, точечных дефектов и границ зерен приводит к дополнительному рассеянию и, следовательно, к увели-  [c.189]


Температурная зависимость удельного сопротивления полупроводника, в который добавлено небольшое количество примеси, показана на рис. 5.7 [12]. На практике в полупроводнике всегда присутствуют как донорные, так и акцепторные примеси, и разработчик полупроводниковых термометров сопротивления может лишь выбирать соотношение между теми и другими. Для описания процессов проводимости рассмотрим германий, содержащий донорные атомы мышьяка в концентрации N(1 и какие-либо акцепторные атомы в концентрации Л а-На рис. 5.7 можно выделить четыре температурных диапазона, в каждом из которых преобладает какой-либо один механизм проводимости". В высокотемпературном диапазоне [I] проводимость обусловлена главным образом электронами, термически возбужденными из валентной зоны в зону проводимости согласно уравнению (5.8), поскольку все примесные атомы давно уже ионизованы. Это область собственной проводимости для германия она начинается чуть выше 400 К. Этот диапазон не представляет особого интереса для германиевых термометров сопротивления.  [c.198]

Таким образом, проводимость зависит от того, как меняется Те с температурой. Как следовало ожидать, с повышением температуры Те падает, так что на рис. 5.7 удельное сопротивление выше 100 К растет до тех пор, пока собственная проводимость не начинает доминировать. Ниже 100 К ионизация (Nd—Na) донорных атомов перестает быть полной и п падает согласно уравнению (5.12). Соответственно удельное сопротивление растет и продолжает расти, пока температура не понизится примерно до 10 К, когда ионизация примесных атомов практически прекращается и свободные носители отсутствуют. Для низкотемпературной части этого диапазона можно записать  [c.199]

Ниже примерно 10 К расположен последний диапазон, в котором проводимость обусловлена перескоком электронов от одного примесного атома к другому. Такая проводимость называется примесной проводимостью она пропорциональна избыточной концентрации донорных атомов Мд—Мд), так что  [c.199]

Точечные дефекты в ионных кристаллах оказывают большое влияние на электропроводность. Электропроводность щелочно-галоидных кристаллов обусловлена движением заряженных точечных дефектов — вакансий, междоузельных собственных или примесных ионов. Поэтому ее называют ионной проводимостью. Изучение ионной проводимости позволяет получать информацию о концентрации и состоянии точечных дефектов.  [c.94]

Учитывая, что в германии е=16, а т =0,25т, получаем для энергии ионизации примесных атомов V группы d 0,01 эВ. В кремнии, где e =12, а т 0,4т, энергия ионизации должна быть примерно 0,04 эВ. Таким образом, достаточно весьма незначительной энергии, чтобы перевести пятый электрон из связанного состояния в свободное , т. е. в зону проводимости. Примеси, которые поставляют свободные электроны, называют донорными. В табл. 7.2 приведены измеренные значения энергии ионизации доноров в кремнии и германии. Они достаточно хорошо согласуются с расчетными значениями Ed.  [c.238]

Здесь N — эффективная плотность состояний в зоне проводимости, определяемая выражением (7.133) g — фактор спинового вырождения примесного уровня. Обсудим физический смысл величины g. Полное число примесных состояний в запрещенной зоне равно числу примесных атомов, т. е. равно A d в расчете на единичный объем кристалла, поскольку каждый атом может отдать  [c.252]

Опыт показывает, что с увеличением концентрации доноров (или акцепторов) наклон прямых 1па от 1/Т в области примесной проводимости уменьшается. Согласно (7.168) это значит, что уменьшается энергия ионизации примеси. При некоторой критической концентрации она обраш,ается в нуль. Для элементов пятой группы в германии эта критическая концентрация составляет ЗХ Х10 см , в кремнии 8-10 см . Полупроводник, в котором энергия ионизации примеси обратилась в нуль, называют часто полуметаллом. В нем концентрация электронов и электропроводность нечувствительны к температуре (кроме области температур, где начинается собственная проводимость).  [c.254]

В полупроводниках с высоким содержанием примеси в области низких температур проявляется специфический механизм проводимости, получивший название проводимости по примесной зоне. Предположим, что мы имеем донорный полупроводник с такой 254  [c.254]

В то же время, при наличии в диэлектрике примесных атомов, свободные носители заряда могут появиться за счет термической активации примесных уровней. Вследствие этого при нормальных и низких температурах проводимость в диэлектриках имеет примесный характер. Так же, как и в полупроводниках, носителями заряда здесь могут быть электроны и дырки. Если примесь имеет донорный характер, то основными носителями заряда являются электроны, а неосновными — дырки. Такой диэлектрик (по аналогии с полупроводником) называют электронным или диэлектриком п-типа. Если же примесь акцепторная, то основными носителями являются дырки. В этом случае диэлектрик называют дырочным или р-типа.  [c.272]


Здесь, как и ранее, пир — концентрация электронов и дырок, а и цр — подвижности этих носителей. В случае примесной проводимости вклад в проводимость дает только один сорт носителей.  [c.272]

Примесное поглощение наблюдается в полупроводниках и диэлектриках, содержащих примесные атомы. В этом случае поглощение света связано с возбуждением примесных центров или с их ионизацией. Например, в материале л-типа электроны с донорных уровней могут быть возбуждены в зону проводимости. Если доноры (или акцепторы) вносят в запрещенную зону мелкие уровни, то наблюдать примесное поглощение можно лишь при достаточно низких температурах. Действительно, в области высоких температур все эти уровни ионизованы за счет термического возбуждения. Так как энергия ионизации примесных уровней меньше, чем энергия, требуемая для перевода электронов из валентной зоны в зону проводимости, то полосы примесного поглощения лежат за краем собственного поглощения.  [c.312]

Концентрация вводимой примеси при использовании таких традиционных термодинамических равновесных методов легирования, как, например, диффузия, не превышает некоторого предела, определяемого растворимостью. В то же время методом ионной имплантации можно ввести в полупроводник практически неограниченное количество примесных атомов. Таким образом, представляется возможным реализовать второй путь, т. е. получить примесную проводимость за счет, введения большой концентрации доноров (или акцепторов). Нам удалось без предварительного снижения плот-366  [c.366]

Аморфные диэлектрики в виде тонких пленок находят широкое применение в микроэлектронике. Во многих таких диэлектриках,, так же как и в аморфных полупроводниках, проводимость (весьма незначительная ) осуществляется путем перескоков из одного локализованного состояния в другое. Энергия активации этого процесса значительно ниже, чем энергия активации примесной проводимости в кристаллических диэлектриках.  [c.371]

В отличие от металлов полупроводники имеют довольно сложный спектр оптического поглощения. В металле фотоны поглощаются электронами проводимости, совершающими переходы внутри энергетической зоны. Поэтому спектр поглощения металла непрерывен металлы поглощают излучение любой частоты. В полупроводниках фотоны могут поглощаться электронами валентной зоны (с последующим переходом в зону проводимости или на примесные уровни, находящиеся внутри запрещенной зоны), электронами на примесных уровнях (с переходом в зону проводимости или на другие примесные уровни), электронами проводимости (с последующими внутризонными переходами). Переходам электронов из валентной зоны в зону проводимости отвечает так называемая полоса собственного поглощения полупроводника она характеризуется наиболее высоким коэ-ф-фициентом поглощения. Частота о) р, соответствующая  [c.164]

В полупроводниках надо учитывать электрон-фононные и электрон-примесные столкновения, однако решающую роль играют столкновения фотоэлектрона с электронами валентной зоны. Специфика этих столкновений состоит в том, что валентному электрону должна передаваться сразу большая порция энергии — не менее ширины запрещенной зоны Д . При этом валентный электрон переходит в зону проводимости, рождается пара электрон проводимости и дырка. Рассматриваемый процесс называют ударной ионизацией-, энергия, передаваемая фотоэлектроном валентному электрону, называется энергией ударной ионизации. Одного акта ударной ионизации может оказаться достаточно для того, чтобы фотоэлектрон утратил возможность участвовать в фотоэмиссии.  [c.170]

Концентрации носителей Па и ра называют равновесными они устанавливаются при наличии термодинамического равновесия. В таком полупроводнике скорость тепловой генерации носителей заряда (генерации за счет теплового возбуждения) равна скорости их рекомбинации. Поэтому По и ро остаются постоянными при неизменной температуре. В собственном беспримесном полупроводнике Па=Ро, носители генерируются и рекомбинируют парами. В примесных полупроводниках с донорными примесями (п-полупроводниках) По>ро, а в полупроводниках с акцепторными примесями (р-полупроводниках) п <ро, здесь наряду с парными процессами происходят также одиночные процессы генерации и рекомбинации носителей. Определяемая выражением (7.3.1) проводимость Оо называется равновесной. Она обусловливает электрический ток, возникающий в неосвещенном полупроводнике при приложении к нему раз-и сти потенциалов (так называемый темповой ток).  [c.174]

На рис. 7.11, а показан характерный процесс рекомбинации через примесный уровень. Здесь 1 — дно зоны проводимости,  [c.175]

Эффект Кондо — явление аномально сильного взаимодействия электронов проводимости в нормальных металлах с локализованными спинами парамагнитных примесных атомов приводит к минимуму электросопротивления некоторых разбавленных сплавов при низких температурах.  [c.289]

Приближение Хартрп — Фока 213 Примитивная ячейка 11 Принцип Паули 177 Проводимость примесная 250  [c.383]

Акцепторные уровни расположены выше потолка валентной зоны, и при наличии энергии активации АЕд электроны л-гз валентной зоны могут переходить на указанные уровни, -оставляя в зоне незанятые энергетические уровни — дырки. Этот переход сопровождается превращением акцепторов в отрицательно заряженные ионы, которые также не участвуют н электропроводности. Такой полупроводник называют примесным полупроводником р-типа (для него характерна дырочная проводимость). Таким образом, в противоположйость собственной проводимости примесная проводимость осуществляется носителями заряда только одного знака — электронами, которые поставляются донорами в свободную зону, нли дырками путем захвата электронов из валентной зоны акцепторами.  [c.92]


При на.тичии в полупроводнике примеси его оптическое поглощение может быть связано с ионизацией примеси или возбуждением электрона нейтральной примеси в кристалле. Это поглощение называют примесным. При ионизации примеси энергия поглощенного кванта света расходуется на переход электронов с донорных уровней в зону проводимости и из валентной зоны на акцепторные уровни, что в спектре поглощения проявляется в виде примесной полосы поглощения. Если при освещении полупроводника светом происходит переход электрона примеси из основного состояния в возбужденное, то наблюдается линейчатый спектр поглощения. В случае, когда донорные уровни находятся вблизи дна зоны проводимости, примесное поглощение, обусловленное переходами электронов примеси из основного состояния в возбужденное или в зону проводимости, должно находиться в далекой инфракрасной области спектра и экспериментально может наблюдаться лишь при низких температурах, когда большая часть атомов примеси не ионизована. То же самое можно сказать и о спектре поглощения акцепторной примеси. На рис. 12.6 изображен спектр примесного поглощения бора в кремнии.  [c.85]

В примесном полуироводнике всегда имеются примеси двух видов доноры и акцепторы, так как полностью очистить полупроводник от примесей одного из типов, оставив другой, практически невозможно. Поэтому проводимость примесного полупроводника определяется преобладающей примесью.  [c.33]

При обсуждении теории процессов проводимости в легированном германии был рассмотрен ряд аналитических выражений для проводимости или удельного сопротивления, в которые входят атомные константы, концентрация или свойства примесных атомов, а также температура. Было отмечено, что, несмотря на достаточно хорошее качественное согласие с экперимен-том, эти выражения нельзя применять для количественного описания характеристик конкретных материалов реальные процессы проводимости слишком сложны. Поэтому экспериментальные данные по зависимости сопротивления от температуры приходится аппроксимировать эмпирическим путем, не слишком полагаясь на физическую теорию, как, впрочем, и в случае платиновых термометров. Однако для германиевых термометров сопротивления эта задача оказывается намного сложнее по двум причинам. Во-первых, зависимость сопротивления от температуры меняется от образца к образцу гораздо сильнее, чем в случае платины, даже если эти образцы изготовлены лю одной технологии. Дело в том, что удельное сопротивление легированного германия очень чувствительно к количеству и свойствам примеси. Во-вторых, удельное сопротивление экспоненциально зависит от температуры, т. е. изменяется с температурой гораздо быстрее, чем удельное сопротивление платины.  [c.240]

Фотопроводимость. Внутренний фотоэффект, или фотопроводимость, — это явление возникновения внутри полупроводника избыточных носителей тока под действием освещения. В простейшем случае собственного полупроводника излучение возбуждает валентные электроны в зоне проводимости, где они находятся в свободном состоянии и могут участвовать в процессе переноса заряда. Вклад в прО Зодимость дают также возникаюш,ие в валентной зоне дырки. В примесном полупроводнике -типа кроме собственного фотоэффекта возможно еще возбуждение электронов из связанных состояний на донорных центрах в зону проводимости. Аналогичным образом в полупроводниках р-типа возможно возбуждение электронов из валентной зоны на акцепторные уровни, создавая тем самым подвижные дырки. Характерно, что в обоих случаях" примесной фотопроводимости в кристалле генерируются свободные носители только одного знака. Так же, как и внешний фотоэффект, фотопроводимость проявляется в однородном материале в присутствии внешнего электрического поля.  [c.346]

Наблюдаемые явления связаны с образованием при больших концентрациях примеси примесных зон. Когда Л/d велика, волновые функции электронов, связанных с примесными атомами, перекрываются. Это приводит к расш,еплению примесных уровней в зону. С увеличением концентрации примеси эта зона все более расширяется и в конце концов сливается с зоной проводимости. Таким образом, исчезает энергия ионизации примеси.  [c.254]

Б. Т. Коломийцем с сотрудниками был-а высказана другая точка зрения. Отсутствие примесной проводимости они связывали с ком-364  [c.364]

Здесь п — полная концентрация электронов Ап( с) — концентрация электронов в зоне проводимости. Из рис. 11.11 и выражения 11.15) следует, что примесную проводимость можно получить, если каким-либо способом удастся снизить плотность состояний в запрещенной зоне. Второй путь — ввести в полупроводник большое количество примесных атомов так, чтобы перекомпенсировать дефектные состояния. Все это, разумеется, возможно при условии, что примесные атомы образуют донорные (или акцепторные) уровни в запрещенной зоне.  [c.365]

Зависимость электропроводности аморфного кремния от дозы облучения приведена на рис. 11.13. Видно, что пока доза облучения не превышает некоторого порогового значения, резкого увеличения электропроводности не наблюдается. При этом практически все электроны с донорных примес- ных уровней переходят на локализованные состояния вблизи р-Лишь после того как все эти состояния будут заполнены, начинает доминировать примесная проводимость, связанная с забросами электронов из донорной зоны в зону проводимости. Аналогичная ситуация имеет ме сто в аморфном гер-мании. в  [c.367]

Если в чистом полупроводнике можно получить вырожденные электронный и дырочный газы лишь за счет значительного нарушения равновесия, то в примесных полупроводниках этого можно достичь и в равновесном состоянии. Равновесный выроледенный газ электронов проводимости может быть реализован в полупроводниках п-типа, а равновесный вырожденный газ дырок — в полупровод-  [c.145]

Элементарные процессы в кристаллофосфорах. Значительно более сложна картина процессов, происходящих Б кристаллофосфорах. Общее представление о ней можно получить, обратившись к ркс. 8.2. Здесь Ei — вершин а валентной зоны, Е — дно зоны проводимости, АЯ — ши-]7нна запрещенной зоны, Е я Е — соответственно основной и возбужденный -уровни примесного иона-активатора (здесь для простоты рассматриваются только два уровня г, общем случае примесный ион имеет большее число уровней), 9 — один из экситонных уровней, —уровень примеси, играющей роль ловушки для электронов про-  [c.188]

Перемещаясь по кристаллу, электроны проводимости, 1ырки и экситоны тем самым переносят по нему энергию возбуждения. Рассмотрим переходы, связанные с высвечиванием этой энергии (в виде фотона люминесцентного излучения). Во-первых, это может быть междузонный переход 8 (рис. 8.2). Во-вторых, это может быть переход, связанный с рекомбинацией электрона и дырки, образующих экситон,—переход 9. Рекомбинация экситона происходит, например, при его столкновении с п-римесным центром. Наконец, это может быть переход //, происходящий в каком-либо примесном ионе-активаторе он сопровождается безызлучательиыми переходами 10 и 12. Все три рассмотренных процесса высвечивания связаны с одновременным уничтожением электрона в зоне проводимости и дырки в валентной зоне иными словами, все они связаны с электронно-дырочной рекомбинацией. В связи с этим используют термин рекомбинационная люминесценция.  [c.190]


Смотреть страницы где упоминается термин Проводимость примесная : [c.284]    [c.635]    [c.253]    [c.494]    [c.198]    [c.251]    [c.252]    [c.255]    [c.295]    [c.145]    [c.175]    [c.214]   
Физика твердого тела (1985) -- [ c.250 ]

Теория твёрдого тела (0) -- [ c.292 ]



ПОИСК



Диффузия в условиях примесной проводимости

Диффузия в условиях примесной проводимости с кластеризацией примеси

Примеры полупроводников Типичные примеры зонной структуры полупроводников Циклотронный резонанс Число носителей тока при термодинамическом равновесии Примесные уровни Заселенность примесных уровней при термодинамическом равновесии Равновесная концентрация носителей в примесном полупроводнике Проводимость за счет примесной зоны Теория явлений переноса в невырожденных полупроводниках Задачи Неоднородные полупроводники

Примеси в полупроводниках проводимость за счет примесной зоны

Примесная проводимость кремния

Примесная проводимость лунроводников

Примесная проводимость металлического типа

Проводимость

Проводимость в примесных зонах и в аморфных -полупроводниках

Проводимость полупроводника примесная

Проводимость примесная адиабатическая

Проводимость собственная, дырочная, электронная примесная

Проводимость, величина примесная электронная

Собственная и примесная проводимости полупроводников



© 2025 Mash-xxl.info Реклама на сайте