Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свободная энергия диэлектрика

Подобно этому, соотношения (10.28" ) возникают потому, что, в то время как F(T, D) определяет изменение. свободной энергии диэлектрика (или изменение свободной энергии поля в диэлектрике) за счет положительной работы внешних источников, перемещающих заряды в поле, выражение F T, Е) определяет изменение свободной энергии диэлектрика (или изменение свободной энергии поля в диэлектрике) при создании поля в диэлектрике с учетом работы против внешних источников.  [c.193]


Аналогично в качестве свободной энергии диэлектрика трической проницаемостью е в электрическом поле использовать функцию  [c.175]

Здесь Р Т, 0) — свободная энергия всего диэлектрика в отсутствие электрического поля. Второе слагаемое представляет собой сумму изменения свободной энергии диэлектрика прп его поляризации электрическим полем и энергию его взаимодействия с полем, а третье слагаемое — энергию электрического поля. При возрастании X свободная энергия уменьшается, так что диэлектрик втягивается в конденсатор с силой  [c.197]

Пространственно-частотные перестановочные соотношения позволяют найти нелинейную часть средней по времени плотности свободной энергии диэлектрика  [c.289]

Из формулы (10.24) видно, что при поляризации диэлектрика в электрическом поле при постоянных температуре и объеме изменение его свободной энергии равно энергии электрического поля в диэлектрике  [c.190]

Собственная свободная энергия единицы объема диэлектрика, связанная с наличием поля, очевидно, равна  [c.191]

Этот результат не является неожиданным. Из электродинамического определения энергии поля видно, что величина е /(8т1) является не энергией, а свободной энергией поля в диэлектрике. Как показывают соотношения (10.25), она как раз совпадает со свободной энергией поляризованного диэлектрика. Внутренняя же энергия поля в термодинамическом смысле совпадает с внутренней энергией диэлектрика в поле (10.27). Легко видеть, что интегрирование уравнения (10.22) для dU при заданных энтропии и объеме не дает для изменения энергии диэлектрика с линейной связью П = гЕ величины D /(8ne)  [c.192]

В этом уравнении внутренняя энергия, как характеристическая функция, имеет независимые переменные энтропию, объем и момент поляризации диэлектрика, т. е. U S, V, Энтальпия, свободная энергия, термодинамический потенциал и их дифференциалы могут быть получены из уравнения (17) таким же путем, как и для магнетика во внешнем магнитном поле, когда совершалась работа расширения (сжатия) вещества (пример 2а).  [c.94]

Показать, что энергия электрического поля в среде, введенная в электродинамике, должна рассматриваться как свободная энергия системы (диэлектрик во внешнем электрическом поле).  [c.109]

Поскольку ф — свободная энергия неполяризованного диэлектрика, легко показать, что  [c.84]


Таким образом, необходимо при заданных распределении внешних зарядов / , расположении стенок сосуда и температуре найти распре деление плотности диэлектрика рт и его поляризацию Р. Кроме того, нужно исследовать устойчивость равновесия. Для решения этой задачи придется рассматривать различные не вполне равновесные состояния и сравнивать их свободные энергии.  [c.156]

Вычислим свободную энергию подобного состояния. Для этого возьмем неполяризованный диэлектрик и поместим его в сосуд таким образом, чтобы получилось нужное распределение плотности рт-Пусть внешние заряды будут сначала удалены. Мы получим состояние  [c.156]

Перейдем к отысканию среди всевозможных состояний [Т, р Рт, Р] такого, которому при данных температуре и распределении внешних зарядов соответствует наименьшая свободная энергия. Оно будет полностью равновесным и установится в конце концов само собой, если диэлектрик может свободно перемещаться и нет никаких препятствий для его поляризации. Для этого вычислим первый дифференциал (как говорят, первую вариацию) свободной  [c.159]

Последнее выражение является условием механического равновесия. Действительно, если оно не выполнено, можно уменьшить свободную энергию перемещением частиц диэлектрика они и на самом деле начнут перемещаться. Чтобы сделать условие (29.29) более наглядным, введем объем единицы массы диэлектрика у = 1/Рт) и давление неполяризованного вещества ро = —д//ду а также заметим, что  [c.161]

Теперь мы выясним связь с термодинамическими величинами. Как известно [2.-2], вариация пространственной плотности Р свободной энергии в диэлектрике есть  [c.204]

Задача 1-15. Используя понятие свободной энергии Гельмгольца, найдите связь между электрической индукцией и напряженностью электрического поля в диэлектрике, а также связь между магнитной индукцией и напряженностью магнитного поля в магнитном материале.  [c.51]

Полагая (см. задачу 10) а = D/4-п , А = -Е = -(4тг/е)Х)/47г, получим для свободной энергии единицы объема (см. задачу 11) диэлектрика  [c.170]

Диэлектрик в электростатическом поле. Плотность энергии поля, как известно, равна еР/8п. Вообще говоря,— эхо плотность свободной энергии. Действительно, диэлектрическая проницаемость е зависит не только от плотности тела, на и от температуры. При выводе же выражения для энергии поля вычисляется работа, и при этом считается, что б постоянна, тем" самым предполагается, что вывод относится к изотермическому процессу. Поэтому в общем случае при е, зависящей от температуры, гЕ /Ъл представляет собой плотность свободной энергии. Если не зависит от температуры, свободная и полная энергии электрического поля совпадают.  [c.51]

ДЛЯ свободной энергии единицы объема (см. задачу 10) диэлектрика  [c.196]

Теплопроводность диэлектриков. В общем случае в твердых телах имеют место два основных механизма переноса теплоты перенос тепловой энергии свободными электронами и перенос тепловой энергии атомными колебаниями. В металлах действуют оба механизма одновременно.  [c.187]

Сначала рассмотрим механизм распространения теплоты атомными колебаниями в диэлектриках, в которых свободных электронов практически нет. Так как атомы в твердом теле связаны между собой, то при нагревании какого-либо участка тела амплитуда колебаний атомов этого участка увеличивается и атомы при своем движении толкают соседние атомы, которые, в свою очередь, передают это движение своим соседям и т. д. Кинетическая энергия колебаний атомов переносится, таким образом, от нагретого участка к более холодному. Макроскопически поток кинетической энергии атомов выглядит как тепловой поток. Этот процесс одинаков с процессом распространения упругих звуковых волн в твердом теле.  [c.187]

В отличие от диэлектриков, где длина свободного пробега фононов при низких температурах, в основном, определяется размерами образца, Б металлах длина свободного пробега электронов при этих температурах определяется дефектами и примесями. Это связано с тем, что энергия электронов (вблизи энергии Ферми), переносящих теплоту, слабо зависит от температуры [формула (6.57)]. Длина волны де Бройля Х=И/(mv ) таких электронов — порядка средних межатомных расстояний, поэтому электроны сильно рассеиваются на дефектах атомных размеров и средняя длина свободного пробега <Хэл> ограничена этими размерами.  [c.196]


Если ширина запрещенной зоны меньше 2—3 эВ, то кристалл называют полупроводником. В полупроводниках за счет тепловой энергии квТ заметное число электронов оказывается переброшенным в свободную зону, называемую зоной проводимости. При очень низких температурах любой полупроводник становится хорошим диэлектриком.  [c.230]

Экситонное поглощение. До сих пор мы рассматривали поглощение света, приводящее к образованию свободных электронов и дырок. Однако возможен и другой механизм поглощения, при котором электрон валентной зоны переводится в возбужденное состояние, но остается связанным с образовавшейся дыркой в водородоподобном состоянии. Энергия образования такого возбужденного состояния, называемого экситоном, меньше ширины запрещенной зоны, поскольку последняя есть не что иное, как минимальная энергия, требуемая для создания разделенной пары. Экситон может перемещаться в кристалле, но фотопроводимость при этом не возникает, так как электрон и дырка движутся вместе. Экситоны могут достаточно легко возникать в диэлектриках, так как D них кулоновское притяжение электрона и дырки значительно. В полупроводниках это притяжение мало и поэтому энергия связи экситона также мала. Вследствие этого экситонные орбиты охватывают несколько элементарных ячеек кристалла (радиус орбиты -"15 нм). В металлах экситонное поглощение очень маловероятно.  [c.310]

Металлы, диэлектрики, полупроводники. Металлы и диэлектрики существенно различаются характером заполнения энергетических зон электронами. На рис. 6.11 заполненным электронным состояниям отвечает двойная штриховка, а свободным — однократная. Случай а относится к металлу, б—к диэлектрику. В последнем случае свободная зона — это зона проводимости, а полностью заполненная — валентная зона. Хотя обобществленные электроны и перемещаются по кристаллу, однако для электропроводимости этого мало надо, чтобы носители заряда обладали также некоторой свободой перемещения по шкале энергии. Ведь для направленного переноса заряда нужна соответствующая составляющая скорости электронов, что связано с приращением энергии. Ясно, что в полностью заполненной зоне приращение энергии невозможно, поэтому в случае б на рисунке мы имеем диэлектрик.  [c.143]

Теплопроводность представляет собой процесс распространения теплоты при непосредственном соприкосновении отдельных частиц тела, имеющих различные температуры. Этот вид переноса теплоты может происходить в любых телах, но механизм переноса теплоты зависит от агрегатного состояния тела. В жидкостях и твердых телах — диэлектриках — перенос теплоты осуществляется путем непосредственной передачи теплового движения молекул и атомов соседним частицам вещества. В газообразных телах распространение теплоты теплопроводностью происходит посредством диффузии молекул и атомов, а также за счет обмена энергией при соударении молекул. В металлах распространение теплоты происходит в основном в результате диффузии свободных электронов и упругих колебаний кристаллической решетки, причем последнее имеет второстепенное значение.  [c.89]

Теплопроводность представляет собой перенос теплоты, осуществляемый посредством теплового движения структурных частиц вещества (атомов, молекул, электронов). В газообразных телах распространение теплоты теплопроводностью происходит вследствие обмена энергией при соударении молекул, имеющих разную скорость теплового движения. В металлах такими структурными частицами являются свободные электроны, в жидкостях и твердых телах (диэлектриках) теплота переносится путем непосредственной передачи теплового движения молекул и атомов соседним частицам вещества в форме упругих волн.  [c.148]

Свободная энергия единицы объема диэлектрика, находящегося в электрическом поле. В условиях, когда независимой переменной является элекгрическое смещение D (например, при перемещении зарядов, создающих поле), выражение для дифференциала свободной энергии надо взять из (10.22). Интегрируя это выражение при постоянных температуре и объеме для диэлектриков с линейным термическим уравнением состояния (относящимся к электрическим величинам D и F) D = sE, получаем  [c.190]

В графеконе мишень состоит из тонкой плёнки металла на основе в виде мелкоструктурной металлич. сетки и тонкого слоя диэлектрика, нанесённого с одной стороны этой плёнки. Записывающий прожектор и его отклоняющая система расположены со свободной от диэлектрика стороны мишени, считывающий со своей отклоняющей системой — с другой. Перед записью в результате предшествующего считывания открытая поверхность диэлектрика приобретает потенциал, отличный от потенциала металлич. подложки. Запись ведётся пучком электронов с энергией (10—16 кэЗ),  [c.50]

Рассеяние носителей заряда. При направленном перемещении электрических зарядов во внешнем электрическом поле (дрейфе или диффузии) носители заряда на пути свободного пробега приобретают от электрического поля энергию. Эта энергия тратится при соударениях — взаимодействиях с молекулами и атомами вещества, которые находятся в состоянии теплового движе1)ия. Отдавая энергию при соударении, носитель заряда повышает интенсивность хаотического движения частиц вещества, следовательно, повышает температуру диэлектрика. По этой причине электропроводность увеличивает е", tg6 и р (мощность рассеяния энергии) диэлектрика, которые зависят от плотности протекающего через диэлектрик активного тока. Соответствующие формулы приведены в табл. 3.3. Из них следует, что электропроводность сказывается на величине tg6 и на коэффициенте потерь е" главным образом при низких частотах оба эти параметра убывают с частотой как 1/со. Удельная мощность потерь в этом случае сводится к мощности потерь при постоянном напряжении (р = = оЕ ). Таким образом, снижение с частотой е" и tg6 не означа-  [c.76]


Движущей силой роста монокристалла из поликристаллического образца в процессах рекристаллизации является избыток свободной энергии, вызванный а) деформацией б) повышенной поверхностью межзеренных границ в) разориентацией зерен. Создание текстуры деформации облегчает получение монокристаллического образца. В ряде случаев возможно вваривание затравки. Процессы получения монокристаллов посредством отжига деформации применяются для металлов. Для полупроводников и диэлектриков используется спекание или горячее прессование (спекание под давлением).  [c.311]

Используя полученное таким образом выражение для свободной энергии, Грюнайзен объяснил ряд свойств металлов и одноатомных диэлектриков, таких, как алмаз. Таблица LXIII даёт, например, сравнение  [c.401]

РЕ — внутренняя. энергия самого диэлектрика плюс потенциальная энергия его во внешнем поле Е. Как ясно из написанного выше дифференциального соотношения, энтропия 5 при разных вариантах выбора а смькшр своего не мбняет. Свободная энергия  [c.158]

Явление теплопроводности состоит в перенсзсе теплоты структурными частицами вещества — молекулами, атомами, электронами — в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температуры, но механизм переноса теплоты зависит от агрегатного состояния тела. В жидкостях и твердых телах — диэлектриках — перенос теплоты осуш,ествляется путем непосредственной передачи теплового движения молекул и атомов соседним частицам вещества. В газообразных телах распространение теплоты теплопроводностью происходит вследствие обмена энергией при соударении молекул, имеющих различную скорость теплового движения. В металлах теплопроводность осуществляется главным образом вследствие движения свободных электронов.  [c.239]

Газы в слабых электрических полях и при не очень высоких температурах обладают весьма малой удельной проводимостью. При этих условиях весьма немногочисленные свободные носители заряда — электроны и ионы — образуются лишь под действием внешних ионизаторов невысокой интенсивности—космических лучей и естественного ионизирующего излучения. Поэтому при указанных условиях газы являются отличными диэлектриками с удельным сопротивлением порядка 10 Ом-м, практически не имеющим диэлектрических потерь (tg б порядка 10 ). Повышение электропроводности газов происходит при высоких температурах, начиная с 10 — Ю К, когда энергия теплового движения частиц газа велика и при столкновении они могут ионизовать друг друга (происходит термическая ионизация). Термоионизация воздуха нарастает, начиная с температуры 8000 К. При 20 ООО К воздух ионизуется практически полностью  [c.545]

В металлах перенос теплоты осуществляется главным образом вследствие диффузии свободных электронов. Доля упругих колебании крпсталлнческо решетки в общем процессе переноса теплоты незначительна из-за огромной иодвижности электронов ( электронного газа ). По этой же причине теплопроводность металлов значительно выше диэлектриков и других веществ. При повышении температуры колебание кристаллической решетки не только способствует переносу энергии, но в то же время создает помехи движению электронного газа , что сказывается на электро-и теплопроводности металлов. Теплопроводность чистых металлов (кроме алюминия) с повышением температуры уменьшается, особенно резко теплопроводность снижается при наличии примесей, что объясняется увеличением структурных неоднородностей, которые препятствуют направленному движению электронов и приводят к их рассеиванию. В отличие от металлов теплопроводность сплавов с возрастанием температуры увеличивается.  [c.64]

Электрический пробой, в процессе которого диэлектрик разрушается силами, действующими в электрическом поле на электрические заряды его атомов, ионов или молекул. Этот вид пробоя протекает в течение 10 — 10 с, т. е. практически мгновенно. Ом вызывается ударной ионизацией электронами. На длине свободного пробега К электрон в электрическом поле приобретает энергию W еЕк, где е заряд электрона. Если энергия электрона достаточна для ионизации, то электрон при соударении с атомами, ионами или молекулами, из которых состоит диэлектрик, ионизирует их. В результате появляются новые электроны, которые также ускоряются электрическим полем до энергии WТаким образом, количество свободных электронов лавинно возрастает, что приводит к резкому повышению проводимости и электрическому пробою. Плотность жидких и твердых диэлектриков больше плотности газообразных, а поэтому д ина свободного пробега электронов в них меньше. Для того чтобы электрон приобрел энергию W, ,, в жидком и твердом диэлектриках нужна большая напряженность электри-  [c.169]


Смотреть страницы где упоминается термин Свободная энергия диэлектрика : [c.190]    [c.655]    [c.110]    [c.83]    [c.156]    [c.158]    [c.158]    [c.69]    [c.196]    [c.178]    [c.230]    [c.161]    [c.10]    [c.84]   
Термодинамика (1970) -- [ c.194 , c.196 ]



ПОИСК



Диэлектрик

Свободная энергия

Энергия диэлектрика



© 2025 Mash-xxl.info Реклама на сайте