Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плазмы колебания

В релятивистской плазме наряду с теми колебаниями, которые были нами рассмотрены (так называемые ленгмюровские колебания), возможны также колебания с законом дисперсии, похожим на закон дисперсии звуковых волн в нейтральном газе . На существование таких колебаний указывал А. А. Власов. В нерелятивистской плазме ввиду сильного затухания Ландау этот тип колебаний существовать не может. Однако такие колебания возможны в ультрарелятивистской плазме, одномерной к тепловому разбросу скоростей, которое реализуется в сильном внешнем магнитном поле. В трехмерной плазме колебания такого типа невозможны. Таким образом, вибрационные свойства релятивистской плазмы существенно зависят от анизотропии функции распределения в пространстве скоростей.  [c.134]


Потоки заряж. ч-ц могут раскачивать в плазме колебания и волны возникающая в этом случае Т. п. наз. кинетической и в зависимости от того, какой именно тип колебаний явл. преобладающим, говорят о ленгмюровских волнах, ионно-звуковых колебаниях и т. п. (см. также Плазма). Кинетическая Т. п., связанная с раскачкой широкого спектра волн в плазме, часто бывает слабой, она больше сходна с совокупностью волн на воде, чем с системой вихрей в турбулентном потоке жидкости. При слабой Т. п. волны имеют небольшую амплитуду, и поэтому процесс передачи энергии от одних волн к дру -гим протекает сравнительно медленно.  [c.771]

Формально такой же результат получается при описании совершенно иного явления — распространения радиоволн в ионосфере. Хотя в этом случае рассматриваются весьма низкочастотные колебания (длина волны порядка десятков метров), исходное положение со о>о оказывается приемлемым. Действительно, ионосфера представляет полностью ионизованный газ (плазму), в котором излучающие электроны не связаны внутриатомными силами. Отсюда следует, что в рамках развиваемой теории нужно положить = f/m = 0. Для таких свободных электронов условие й>о будет удовлетворяться даже в области столь низких частот.  [c.146]

Для описания колебаний плазмы вводится дополнительная система переменных (1i < %р.)- С этой целью к гамильтониану Hj, опреде-  [c.765]

Величины Их должны быть определены так, чтобы новые переменные, описывающие плазму и фононы, не были бы связаны друг с другом и представляли бы независимые колебания. Кроме того, необходимо, чтобы, как и в гамильтониане, связь через дополнительные условия отсутствовала. Величина и частота фононов определяются при каноническом преобразовании, которое исключает с точностью до заданного порядка члены, описывающие электронно-фононное взаимодействие в (40.5). Требуется также, чтобы с точностью до того же самого порядка и преобразованных дополнительных условиях не было бы связи между электронами и фононами, а это будет в том случае, если фононные переменные в дополнительных условиях в этом порядке но появляются.  [c.766]

Применим линеаризованное уравнение Власова (7.64) к исследованию колебаний электронной плазмы.  [c.130]

Колебания электронной плазмы  [c.130]

Рассмотрим колебания электронов плазмы при малом отклонении их распределения от равновесного (Л С/о) в отсутствие внешнего поля. Согласно изложенному в 36 функция f(г, V, I) в этом случае определяется линеаризованным кинетическим уравнением Власова (7.74). Для малых колебаний зависимость функции )1(г, V, t) и потенциала ф(г, I) от времени и координат можно принять в виде продольной плоской волны, распространяющейся, например, в положительном направлении вдоль оси х  [c.130]


Мы рассмотрели колебания нерелятивистской плазмы. Однако в ряде случаев необходимо учитывать и релятивистские эффекты. Это, во-первых, случай достаточно высоких температур, когда энергия теплового движения частиц 0=кТ сравнима с их энергией покоя тс , и, во-вторых, рассмотрение явлений, обусловленных той частью распределения частиц по скоростям, для которой скорость частиц сравнима со скоростью света (это возможно даже при нерелятивистской температуре).  [c.134]

Таким образом, каждая частица одновременно взаимодействует с целым коллективом соседних частиц и, следовательно, плазма представляет собой, по существу, не газ, а своеобразную систему, стянутую дальнодействующими силами. Благодаря дальнодействию кулоновских сил и большой подвижности легких электронов в плазме определяющую роль играют коллективные процессы, т. е. колебания и волны различных типов.  [c.215]

При концентрации и=10 электронов в плазме собственная частота колебаний плазмы равна Оо = 5 Ю с что соответствует дециметровым волнам.  [c.220]

Впервые наличие колебаний в плазме было установлено в 1906 г. Рэлеем и независимо в 1929 г. И. Ленгмюром, получившим формулу (10.87) для частоты oq (которая поэтому называется ленгмюровской частотой колебаний плазмы).  [c.220]

Дальнодействующим характером кулоновских сил взаимодействия определяется также и другая особенность плазмы — существование в ней собственных продольных колебаний создан-нов в некоторый момент изменение плотности электронов в плазме не релаксирует, как плотность в обычном газе, а колеблется с определенной частотой, зависящей только от концентрации электронов. Эти колебания вызываются тем, что изменение плотности электронов в каком-либо месте плазмы связано с появлением в этом месте объемного заряда, иоле которого, действуя на движение смещенных электронов, приводит к появлению восстанавливающей силы, пропорциональной их смещению. Под действием этой силы электроны вибрируют с определенной частотой. Найдем ее. Для этого выделим мысленно в плазме с концентрацией п электронов прямоугольный параллелепипед длиной dx и площадью сечения S (объем параллелепипеда йУ=  [c.285]

Энергия, переданная среде, соответствует энергии, выделенной в канале разряда за время первого полупериода колебаний разрядного тока (Т/2) в цепи источник импульсов-нагрузка. В этом диапазоне времени достигаются максимальная скорость нарастания мощности в канале разряда и его максимальный диаметр за счет движения стенки канала разряда. Энергия, выделяющаяся в последующий промежуток времени в канале разряда, не создает существенных нагрузок в объеме материала, так как она расходуется на плавление стенок канала разряда и выдувание из него плазмы через устья.  [c.86]

Отсутствие плазмы повышает также стабильность генерации, так как отсутствуют высокочастотные колебания плазмы, страты, перекачка газа, нет жестчения и газовыделения.  [c.67]

Эти электромагнитные волны в металле называют магнитоплазменными. Волны первого и второго типа аналогичны соответственно быстрой магнитозвуковой и альфвеновской волнам в плазме ). Колебания же, соответствующие медленной магнитозвуковой волне, заведомо не могут иметь скорость а/к, удовлетворяющую второму условию (89,1), и потому не могут здесь появиться.  [c.455]

С физической точки зрения, происхождение этой неустойчивости связано с резонансным взаимодействием между колебаниями среды и движением ее частиц в основном течении, и в этом смысле оно аналогично происхождению известного из кинетической теории затухания (или усиления в неустойчивом случае) Ландау колебаний в бесстолкновительиой плазме (см. X, 30)2).  [c.242]

Коллективное описание электронно-ионного взаимодействия. Бом и Пайне (см. п. 36) учли кулоновское взаимодействие на больщих расстояниях путем введения дополнительных координат, которые описывают движение электронного газа как колебания илазмы. Так как координаты отдельных ионов остаются неизменными, то число введенных в этом методе координат превышает число координат, необходимых для описания системы. Поэтому необходимо, чтобы волновая функция системы удовлетворяла определенным дополнительным условиям. Этот метод был применен Пайнсом и автором [19] для учета движения ионов. Помимо колебаний плазмы, имеются связанные электронно-ионные колебания, которые соответствуют продольным звуковым волнам. Мы изложим эту теорию в общих чертах, причелг для рассмотрения взаимодействия элек-  [c.764]


Для волновых функций, удовлетворяющ их (40.2), значения энергии гамильтониана Н при введенных дополнительных переменных будут совпадать со значениями энергии для Н . Путем ряда канонических преобразований можно перейтн от переменных Р , определенных выше, к переменным, представляющим колебания плазмы.  [c.765]

Плазмой — квазичастица, описывающая связати1ые колебания электронной плотности и электромагнитного поля в плазме твердого тела, в Плотность состояний — число состояний, приходя-тцееся на единичиьн интервал энергий.  [c.284]

В плазме излучающий атом находится под воздействием быстропеременных полей соседних заряженных частиц. В первом приближении электрическое поле ионов можно считать квазиста-тическим, приводящим к обычному расщеплению линии. Воздействие электронов на атом, наоборот, можно считать резким ударом, обрывающим цуг колебаний излучаемой волны или, если  [c.268]

Закон дисперсии в рассматриваемом приближении таков, что циклическая частота колебаний о не зависит от волнового вектора и равна постоянной ленгмюровской частоте. Это указывает на аномально сильную дисперсию колебаний электронной плазмы, именно такую, что величина групповой скорости равна нулю, -г. е. колебания в этом случае не распространяются. Созданная электронная макроскопическая неоднородность в плазме не ре-даксирует, как в обычном газе, а вибрирует (не распространяясь) с большой частотой гоо=5-10 с при =10 м ).  [c.131]

Гвоздезабивные станки В 27 F 7/02-7/04 Гвозди [виды F 16 В 15/00-15/08 инструменты для В 25 С <13/00 выпрямления забивания 1/00-1/18, 7/00) тара и упаковочные элементы для хранения и транспортирования В 65 D 85/24 устройства В 25 <для извлечения С 11/00-11/02 в молотках для извлечения гвоздей D 1/04 для поддерживания и направления С 3/00)] Гелий [С 01 В 23/00 <использование для сжижения или отверждения газов или их смесей сжижение) F 25 J 1/02] Гелиотехника, использование солнечной энергии F 24 J 2/00-2/52 Генераторы [механических колебаний В 06 В тахоме-трические, использование для измерения расстояний G 01 С 22/02 шума и хаотических колебаний Н 03 В 29/00] Генерирование (плазмы Н 05 Н 1/24-1/52 сейсмической энергии G 01 V 1/02-1/157) Геометрия, устройства для распознания геометрических фигур G 06 К 9/00-9/82) Герметизация (гальванических элементов Н 01 М 2/08 герметизирующие элементы из пластических материалов В 29 L 31 26 затворов тары В 65 D 53/00-53/10 литейных форм В 29 С 39/32 элементов теплообменных аппаратов F 28 F 9/04-8/18, 11/00-11/06) Герметичность G 01 М [испытание с помощью <жидких и газообразных веществ или вакуума 3/00-3/36 света 3/38 электрических устройств 3/40)]  [c.63]

ВОЛНЫ [капиллярные — поверхностные волны малой длины, в которых основную роль играют силы поверхностного натяжения когерентные — волны света, у которых разность их фаз не зависит от времени ленгмюровскне — продольные колебания плотности электронов в плазме Маха — ударные звуковые волны, возникающие при движении тел со скоростями, превышающими фазивые скорости упругих волн в данной среде некогерентные — волны света, разность фаз которых изменяется с течением времени поверхностные <— волны, распространяющиеся на свободной поверхности жидкости или на поверхности раздела несмешивающихся жидкостей акустические — упругие волны, распространяющиеся вдоль поверхности твердого тела и затухающие при удалении от нее электромагнитные — электромагнитные волны, распространяющиеся вдоль некоторой поверхности и затухающие при удалении от нее) поперечные — волны, когда частицы среды колеблются в плоскостях, перпендикулярных к направлению распространения волны (эта среда должна обладать упругостью формы) продольные — волны, если колебания частиц среды происходят в направлении распространения  [c.227]

КОЛЕБАНИЯ [нулевые характеризуют колебания квантового гармонического осциллятора с наименьшей возможной энергией параметрические возбуждаются путем периодического изменения параметров колебательной системы периодические характеризуются повторением через равные промежутки времени значений физических величин, изменяющихся в процессе колебаний нлазмы ленгмюровские вызываются силами электрического поля, которое возникает в электроней-тральной плазме при каком-либо случайном отклонении пространственного распределения электронов от равновесного поляризованные (линейно для колебаний в противофазе или синфазных по кругу (циркулярно) для колебаний с равными амплитудами эллиптически для колебаний с неравными  [c.242]


Смотреть страницы где упоминается термин Плазмы колебания : [c.930]    [c.107]    [c.470]    [c.340]    [c.66]    [c.44]    [c.218]    [c.327]    [c.130]    [c.131]    [c.134]    [c.219]    [c.220]    [c.286]    [c.388]    [c.389]    [c.62]    [c.90]    [c.187]    [c.188]    [c.264]    [c.266]    [c.266]   
Физика низких температур (1956) -- [ c.215 ]



ПОИСК



Влияние ионно-звуковых колебаний на электронные потоки в авизо термической плазме

Дисперсионное соотношение колебаний плазмы

Дисперсия и затухание продольных колебаний электронной плазмы

Интеграл столкновений заряженных частиц, учитывающий динамическую поляризацию плазмы, и кинетика взаимодействия частиц и плазменных колебаний

Ионно-звуковые колебания пеизотермической плазмы

Колебания электронной плазмы

Магаитогидродинамические колебания в плазме

ОГЛАВЛЕНИЯ Высокочастотная диэлектрическая проницаемость плазмы в условиях, когда период колебания поля мал по сравнению с временем взаимодействия сталкивающихся частиц

Плазма

Резонансное поглощение лазерного излучения при наклонном падении на слой неоднородной плазмы. Продольные плазменные колебания

Частота колебаний плазмы

Электронный газ как квантовая плазма. Экранирование и плазменные колебания



© 2025 Mash-xxl.info Реклама на сайте