Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плазменная (ленгмюровская) частот

Плазменная (ленгмюровская) частота 539  [c.748]

В многокомпонентной плазме, содержащей эл-ны, ионы п нейтральные молекулы и пронизанной магн. полем Земли (см. Земной магнетизм), могут возникать разл. виды собств. колебаний, имеющих разные частоты. Напр., плазменные (ленгмюровские) Vкп Ме  [c.618]

Комплексная диэлектрическая проницаемость плазмы определяется известной формулой 1 — (o)i V) +/ttg/fe, где (О — частота лазерного излучения, k — волновое число, ol — Ленгмюровская (плазменная) частота Из приведенной формулы  [c.175]


Оптические свойства. Для эл.-магн. воли оптпч. диапазона М., как правило, непрозрачны. Характерный блеск — следствие практически полного отражения света поверхностью М., обусловленного тем, что диэлектрическая проницаемость электронного газа 8 при оптич. частотах отрицательна. Диэлектрич. проницаемость М. е = Ей — о) ,/со , где ей — диэлектрич. проницаемость ионного остова, — плазменная (ленгмюровская) частота электронов. Плазменные частоты могут быть экспериментально определены по характеристич. потерям энергии быстрых электронов (с энергией при прохождении через металлич. плёнку. Они теряют энергию на возбуждение плазмонов — квантов колебаний электронной жидкости с частотой ljl (табл. 8),  [c.119]

В. в п. в отсутствие магнитного поля. В отсутствие внешних электрич. и магн. полей ( 0 = 0, Яа=0) в изотропной холодной плазме существуют две моды собств. колебаний продольные и поперечные волны. (Диэлектрич, проницаемость плазмы е в отсутствие внеш. полей является скаляром.) Причиной продольных колебаний (J f ), наз. ленгмюров-с к и м и (плазменными колебаниями или волнами пространственного заряда), является электрич, иоле, вызываемое разделением зарядов. Частота этих колебаний не зависит от длины волны, т, е. нет дисперсии этих волн, и равна ленгмюровской частоте 1лектронов lXl = a) ,(,= Здесь п — плотность равновесной  [c.328]

Отличия и достоинства П. э. Подобно вакуумной и квантовой электронике П. э. основана на явлении индуцированного (вынужденного) излучения и поглощения эл.-магн. волн заряж. частицами в плазме. Но если вакуумная электроника рассматривает излучение потоков заряж. частиц, движущихся в электродинамич. структурах — металлич, либо диэлектрич. волноводах и резонаторах, то П. э. исследует излучение потоков заряж. частиц, движущихся в плазме, в плазменных волноводах и резонаторах (см. Волновод плазменный). Частота эл.-магн. излучения в вакуумной электронике определяется конечными геом. размерами волноводов и резонаторов, а в квантовой электронике — дискретностью энергетич. уровней излучателей (возбуждённых атомов и молекул) поэтому генераторы когерентного эл.-магн. излучения в вакуумной и в квантовой электронике узкополосны, менять их частоту плавно практически невозможно. В плазменных приборах частота зависит не только от геом. размеров волноводов и резонаторов, но и от п.чотности плазмы, поэтому излучатели в П. э. многомодовые меняя плотность плазмы, можно менять частоты в широком интервале.В этом заключается одно из существ, отличий и преимуществ П. э. Так, напр., частота продольных ленгмюровских колебаний холодной изотропной плаз.мы (в систе.ме ед. СС8Е) Шр = (3-10 Нр) / С", где Пр — плотность плазмы. При изменении реально используе.мой плотности плазмы в пределах (10 °—Ю ) см" можно возбуждать волны длиной X (10" —10 ) см, что перекрывает всю полосу СВЧ от субмиллиметрового и до дециметрового диапазона. При наложении на плазму внеш. магн. поля диапазон частот собств. мод эл.-магн. колебаний плазмы расширяется.  [c.607]


Интересными особенностями обладают Н. я. в п., связанные с фазовой памятью частиц, напр. явление плазменного эха. Суть его состоит в следующем. Возбуждённая в к.-л. точке пространства ленгмюровская волна затухает при распространении вследствие затухания Ландау. В любой точке, где первая волна уже затухла, возбудим на другой частоте другую волну, к-рая также затухнет на определ. расстоянии. После затухания первой и второй волн через определённые пространственные интервалы можно наблюдать вспышки ВЧ-колебаний на комбинац. частотах, это и наз. плазменным эхом. Появление эха можно пояснить на простом примере. Если в точке г — О внеш. источником возбуждается электрич. поле с частотой oi tOj (напр., с шмощью сетки), то это поле модулирует тепловые патоки частиц так, что ф-ция распределения электронов пропорциональна б/i exp[ i ji(i — з/е) . Такое распределение электронов создаёт эле1 трич. поле лишь в районе г = О и нуль во всём остальном пространстве. Если в точке z — d стоит аналогичная сетка, модулирующая потоки частиц с другой частотой (Oj > соо, тогда б/а ехр гсОг[< — (г — d)lv . Здесь также из-за быстрых осцилляций ф-ции распределения поле всюду, кроме z — d. отсутствует. Однако нелинейный отклик ф-ции распределения, который пропорционален б/ -б/з, даёт ненулевое поле в точке Z — —(Oj), т. к. здесь зависимость от скорости  [c.317]

Помимо хаотич. теплового движения частицы П. могут участвовать в упорядоченных коллективны.х процессах, из к-рых наиб, характерны продольные колебания пространствейного заряда — ленгмюровские волны. Их угл. частота сОр = лпе /т наз. плазменной частотой (сит— заряд и масса электрона). Многочисленность и разнообраэие коллективных процессов, отличающие плазму от нейтрального газа, обусловлены дальностью кулоновского взаимодействия, благодаря чему П. можно рассматривать как упругую среду, в к-рой легко возбуждаются и распространяются разл. шумы, колебания и волны. Наличие собств. колебаний и волн — Характерное свойство П.  [c.595]

П. т. т., как и газовая плазма, в среднем электрически нейтральна из-за компенсации зарядов разных знаков вследствие временны-х флуктуаций плотности электрич. заряда в ней возникают плазменные или ленгмюровские колебания электронов, частота к-рых (для предельно длинных волн) определяется ф-лой (см. Воаны в плазме)  [c.600]

ПЛАЗМЕННАЯ ЧАСТОТА — частота ленгмюровских колебаний, называемых также плазменными колебаниями и продольными (к II Е) колебаниями пространственного заряда Юр = У4лпе /т , п — плотность, е и — заряд и масса электрона, к — волновой вектор, Е — электрич. поле, вызываемое разделением зарядов. В холодной плазме (Tg = Ti) ленгмюровские колебания не обладают дисперсией, т. в. П. ч. Шр не зависит от длины волны. Подробнее см, в ст. Волны в плазме. ПЛАЗМЕННАЯ ЭЛЕКТРОНИКА — раздел физики плазмы, изучающий коллективные взаимодействия плотных потоков (пучков) заряж. частиц с плазмой и газом, приводящие к возбуждению в системе линейных и нелинейных эл.-магн. вола и колебаний, и использование эффектов такого взаимодействия. Прикладные задачи, к-рые ставит и решает П. э., определяют её осн, разделы плазменная СВЧ-электроника, изучающая возбуждение в плазме интенсивного когерентного эл.-магн. излучения, начиная от радио-и вплоть до оптич. диапазона длин вола плазменные ускорители, осн. на явлении коллективного ускорения тяжёлых заряж. частиц электронными пучками и волнами в плазме плазменно-пучковый разряд, основанный на коллективном механизме взаимодействия плотных п.уч-кон заряж. частиц с газом турбулентный нагрев плазмы плотными пучками заряж. частиц и коллективные процессы при транспортировке и фокусировке пучков в проблеме УТС (см. Ионный термоядерный синтез) неравновесная плазмохимия, изучающая процессы образования возбуждённых молекул, атомов и ионов при коллективном взаимодействии пучков заряж. частиц с газом и плазмой.  [c.606]

Др. важное отличие плазмеввых проводников от конденсированных заключается в том, что большинство плазменных образований существуют при условии, что через них протекает ток. Таковы классич. электрические разряды в газах, плазма в плазменных ускорителях, тока-маках и др. При изменении тока плазменная структура (конфигурация) плавно или скачкообразно изменяется, в ней могут в широком диапазоне частот развиваться колебания (от акустических до ленгмюровских), на электродах возникать привязки и т. п. Около электродов, помещённых в плазму, обычно возникают при-электродные слон, падение потенциала на к-рых может существенно превосходить падение потенциала в осн. части плазменного объёма (найр., в тлеющем разряде). По этой причине для большинства плазменных систем особое значение имеют не дифференциальные, типа (1), а интегральные характеристики П. п. Для стационарных систем это, в первую очередь, волът-амперные характеристики  [c.132]


В целом ряде случаев записимость частоты плазменных колебаний значительно менее существенна, чем соотлетствующая зависимость инкремента. Такоо положение обусловлено тем, что частоты плазменных колебаний определяются сравнительно медленно изменяющимися параметрами, определяющими распределения частиц. Так, в случае электронных ленгмюровских и в случао ионнозвуковых колебаний частоты плазменных ко.пебапий являются плавными функциями плотности числа частиц и их температуры. Напротив, инкременты (так же как и декременты) колебаний часто определяются малыми группами резонансных частиц, перераспределение которых, возникающее в результате взаимодействия с  [c.259]

П.1азменные колебания. Плазма металлов. В электронной плазме металлов могут существовать ленгмюровские колебания [I]. При этих колебаниях на плоский слой электронов плотностью п, смещенный от положения равновесия на расстояние действует возвращающая сила № = е6 = = — р4япе6зс (е — заряд электрона, Е — напряженность-электрич. поля), вызывающая колебания около положения равновесия с плазменной частотой 0) Шр = — 6F,m(>x = = innp lm (т — масса электрона). В металлах 10 с<>к->.  [c.24]

В ряде экспериментальных работ по изучению взаимодействия плазмы с электромагнитной волной с частотой, близкой к плазменной частоте, были обнаружены сгустки ленгмюровских волн, в которых плотность плазмы была понижена. В [3.15] утверждалось, что такие сгустки появляются как следствие задержки сжатия пакетов ленгмюровских волн, образующихся в результате параметрической неустойчивости. Можно полагать, что упомянутые выше кавитоны соответствуют сгусткам, обнаруженным в эксперименте [3.15].  [c.66]

Кроме осн. максимума, соответствующего частоте падающего излучения, наблюдаются максимумы комбинационного рассеяния на шумах плазмы, позволяющие получить информацию об уровне её турбулентности. По положению комбинац. максимумов, отвечающих ленгмюровским плазменным частотам (Ир, определяют плотность плазмы. Сложность этих исследований заключается в том, что при малых плотностях см )  [c.156]

ЛЕНГМЮРОВСКИЕ ВОЛНЫ, продольные колебания плазмы с плазменной частотой щ=У лпе т е — заряд и т — масса эл-на, п — плотность плазмы) изучались амер. учёными И. Ленгмюром и Л. Тонксом в 1929. Для плазмы характерно дальнодействие кулоновских сил, благодаря чему она может рассматриваться как упругая среда. Если группу эл-нов в плазме сдвинуть из их равновесного положения, то на них будет действовать электростатич. возвращающая сила, что и приводит к колебаниям.  [c.346]


Смотреть страницы где упоминается термин Плазменная (ленгмюровская) частот : [c.258]    [c.218]    [c.414]    [c.240]    [c.539]    [c.72]    [c.162]    [c.412]    [c.648]    [c.20]    [c.122]    [c.302]    [c.167]   
Общий курс физики Оптика Т 4 (0) -- [ c.539 ]



ПОИСК



Плазменная частота

Плазменное эхо

Частота ленгмюровская



© 2025 Mash-xxl.info Реклама на сайте