Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Защитные покрытия никелевые

Нанесение защитных покрытий уменьшает агрессивное влияние коррозионной среды, что способствует повышению устойчивости стали к коррозионному растрескиванию. Никелевые покрытия обеспечивают защиту от коррозионного растрескивания в хлоридах, щелочах и других средах. Весьма высокий защитный эффект во многих средах дают алюминиевые покрытия.  [c.16]

Таким образом, использование приема последовательного насыщения поверхности никелевых сплавов позволяет в меньшей степени использовать элементы сплава для формирования покрытия II обеспечивает получение стабильного защитного покрытия.  [c.174]


Никель — графитовое волокно. Композиционный материал никель — углеродное волокно получали горячим прессованием прядей графитового волокна, уложенных в одном направлении, на которые предварительно наносилось электролитическим методом никелевое покрытие толщиной 1—3 мкм [203, 204]. Для предотвращения взаимодействия волокна с никелевой матрицей на углеродное волокно наносят карбидные покрытия (патент США № 3796587, 1972 г.). В качестве примера применения карбидного покрытия на графитовом волокне может служить покрытие из карбида титана, наносимое на волокно методом его погружения в расплав, состоящий из металла-носителя, не взаимодействующего с волокном, например индия и растворенного в нем титана. Расплав содержал 99,5% индия и 0,5% титана. Для покрытия волокно погружали в такой расплав, нагретый до температуры 850° С, на 4 мин. После отмывки этого волокна в течение 15 мин в 50%-ном растворе соляной кислоты на поверхности графитового волокна оставался слой покрытия карбида титана толщиной 0,5 мкм. Режимы диффузионной сварки углеродного волокна с никелевым покрытием, приведенные в указанных выше работах, примерно одинаковы. Во всех случаях прессование осуществлялось в вакууме 2-10 —1 10 мм рт. ст. при температуре 840—1100° С, давлении 100—175 кгс/см в течение 45—60 мин. Оптимальный режим получения композиционного материала с углеродным волокном без нанесенного предварительного защитного покрытия температура 1050° С, давление 140 кгс/см и время выдержки 60 мин. Полученный по такому режиму материал, содержащий 46—55 об. % волокна Торнел-50, имел предел прочности 55—73 кгс/мм .  [c.143]

Защитные покрытия цинковые, кадмиевые, свинцовые, оловянные и никелевые, а также покрытия или защитные пленки, получаемые путем фосфатиро-вания, оксидирования и т. п.  [c.714]

Аналогичные затруднения возникли в 60-х гг., когда содержание хрома в никелевых суперсплавах снижали, чтобы улучшить сопротивление ползучести, а вызывали снижение стойкости против окисления и горячей коррозии. Следствием было значительное снижение долговечности сплавов, применявшихся в различных промышленных газовых турбинах, а также авиадвигателях, предназначенных дЛя работы в засоленной атмосфере. Проблему решили, улучшив соотношение хрома, алюминия и титана в совокупности с применением защитных покрытий.  [c.46]

Шероховатость поверхности после нанесения декоративных покрытий (никелевого, храмового, окисного), как правило, не изменяется, если поверхность не подвергают механическому полированию. После нанесения защитных покрытий шероховатость поверхности в зависимости от состояния исходной поверхности и типа электролита либо остается без изменения, либо снижается на один-два класса.  [c.113]


Испытания показали, что медь-никелевые покрытия при суммарной толщине слоя 18 мкм не уступают по защитной способности никелевым (медный подслой получали из аминового электролита).  [c.689]

Защитные покрытия на алюминии 656 железе 655, 720 магнии 658 сталях 658 цинке 608, 655, 656 никелевые 588, 604, 662 способ и условия нанесения 689, 696 нормы 659  [c.827]

Покрытие никелем придает красивый блестящий вид покрываемому металлу после полирования. Защитные свойства никелевых покрытий невысоки они обладают хрупкостью.  [c.170]

В зависимости от назначения покрытий подготовку поверхности основного металла проводят по-разному. Например, перед нанесением защитных гальванических покрытий (цинковых, кадмиевых) подготовка поверхности сводится в основном к обезжириванию и травлению. Перед нанесением защитно-декоративных покрытий (никелевых, хромовых) недостаточно только удаления жиров и окислов, а необходима тщательная механическая обработка для получения гладкой поверхности, так как в процессе нанесения за-щитно-декоративных покрытий дефекты поверхности не только не исчезают, но часто становятся более рельефными, поскольку плотность тока и толщина на выступах больше, чем в углублениях.  [c.41]

Защитные покрытия цинковые, кадмиевые, оловянные, свинцовые и никелевые, а также защитные пленки, получаемые фосфатированием, оксидированием, и покрытия сплавами кадмий—цинк, олово — цинк, медь — цинк, свинец — олово, цинк — никель.  [c.606]

Для улучшения защитных свойств никелевого покрытия рекомендуется также способ никелирования в два—три слоя с различными физико-химическими свойствами. При трехслойном никелировании нижний матовый или полублестящий слой никеля получают из электролита с выравнивающей добавкой, не содержащей серы. Толщина этого слоя составляет 50—70% толщины всего осадка. Затем наносят тонкий, очень активный промежуточный слой никеля толщиной 1—2 мкм, содержащий 0,1—0,2% серы. Третий верхний зеркально-блестящий слой никеля толщиной 30—50% общей толщины покрытия содержит около 0,05% серы.  [c.275]

Защита металлов от газовой коррозии может быть достигнута различными способами защитные покрытия, уменьщение агрессивности газовой среды и др. Наиболее эффективным способом защиты от окисления при высоких температурах является жаростойкое легирование, т. е. введение в состав сплава компонентов, повыщающих его жаростойкость. Основными элементами, способствующими созданию защитного слоя на обычных железоуглеродистых, никелевых и других сплавах, являются хром, алюминий и кремний. Эти элементы окисляются при высоких температурах на воздухе легче, чем легируемый металл, и образуют хорошую защитную окалину.  [c.146]

В сероводородсодержащих средах, в том числе в присутствии СГ, никелевые покрытия имеют электрохимические характеристики, обеспечивающие высокие защитные свойства значительную область анодной пассивности от О до +900 мВ и малые величины тока в пассивном состоянии (г пп = 20 мкА/см ). При наложении растягивающих напряжений, равных 0,9 Оо,2. защитная способность никелевых покрытий остается достаточно высокой, хотя пассивная область сдвигается от О до +700 мВ и пробой пассивной пленки наступает при потенциале +700 мВ, в то время как без, наложения растягивающих нагрузок при 900 мВ. Дальнейшее повышение напряжения приводит к отслаиванию покрытий на отдельных участках поверхнс.)Сти. Так1.)е доведение никелевых покрыгии (.вязано и высоким уровнем внутренних напряжений и их низкой пластичностью.  [c.95]

Основными структурными составляющими двухстадийного комплексного диффузионного покрытия являются фазы p-NiAl и -(N1, Сг)зА1. Между параметрами решеток основных фаз никелевых сплавов и подслоя нихрома существует положительное размерное несоответствие. В наружной зоне покрытий концентрация легирующих элементов сплавов, таких как титан, ванадий, молибден, значительно ниже, чем при одностадийном формировании защитных покрытий.  [c.243]


Необходимо отметить, что указанные факторы — амплитуда деформации, длительность и максимальная температура цикла — являются основными, но не единственными параметрами, определяющими вид разрушения. Не изменяя в целом вид диаграммы, границы областей, характеризующих разрушения различного вида, можно сдвигать в ту или иную сторону для учета воздействия технологических и экшлуатационных факторов (например, шособа и режима выплавки металла, влияния среды, защитных покрытий). Так, вакуумная выплавка никелевого сплава существенно повышает прочность границ зерен, вследствие чего при одних и тех же условиях нагружения смещается область величин сре, фо Ф 1 в которой разрушение происходит по границам зерен. Наоборот, при активном повреждении границ зерен, например при эксплуатации в газовых средах или при склонности материала к межкристаллитной коррозии, разрушение от термической усталости почти всегда начинается по границам зерен еледовательно, в этом случае уменьшаются области Л и 5 на рис. 58 (по границам зерен развивалось разрушение при нагружении стали 12Х18Н9Т при 750° С тв=1,5  [c.102]

Толщина обычных декоративных электроосаждаемых осадков обычно составляет около 0,3 мкм. Если эти осадки используются с подслоями никеля соответствующей толщины и качества, то основной металл (сталь, цинковые сплавы или медь) можно полностью защитить от внешнего воздействия на протяжении от шести недель до шести месяцев. После образования маленьких язв или пузырей, содержащих продукты коррозии основного металла, декоративные внешние качества изделия теряются, хотя функциональные качества могут оставаться неизменными еще более длительный период времени. Можно немного улучшить качества за счет нанесения плотных молочных осадков (см. гл. 3), но в этом случае сопутствующим недостатком явится чрезмерная хрупкость. Если же использовать осадки хрома, имеющие микронесплошности (такие, как микротрещины или микропоры) при толщине покрытия 0,3—1,0 мкм, создаваемого электроосаждением (см. гл. 3), то снижение плотности локального анодного тока замедлит проникающую коррозию в защитных подслоях никелевого покрытия, и срок службы полностью сохраненной декоративной поверхности может составить от одного года до пяти лет. Даже по истечении этого времени потеря внешнего вида часто связана не с коррозией основного металла, а с мельчайшим отслаиванием хрома от никеля в результате поверхностной коррозии никеля, вследствие чего поверхность хрома становится матовой.  [c.112]

В результате нагрева химически осажденное никелевое покрытие превращается в двухфазную структуру — интерметаллическое соединение NisP и твердый раствор фосфора в никеле. Термообработка при 400°С увеличивает твердость и снижает пластичность покрь тия. Повышение температуры нагрева до 750°С дифференцирует защитное покрытие на фосфорсодержащий хрупкий никелевый слой на поверхности и бесфосфори-стый никелевый слой, имеющий более высокую пластичность [231]. Поскольку электродные потенциалы обоих слоев различаются мало, то хрупкое разрушение внешнего слоя при коррозионной усталости углеродистой стали не приведет к преимущественному растворению бесфосфо-ристого слоя. Так как последний имеет более высокую пластичность, то возникшая в фосфорсодержащем слое трещина замедляет скорость развития. В результате нагрев химически никелированных образцов в слабоокислительной среде до 750°С существенно повышает эффективность покрытий на стали 45 и соответственно ее коррозионную выносливость в водопроводной воде.  [c.182]

В практике имели место попытки защитить сплавы от коррозии в контакте с золой, содержащей пятиокись ванадия, путем нанесения защитных покрытий. Исследовались различные гальванические, диффузионные, керамические и металлокерамические покрытия. Гальванические никелевые и хромовые покрытия разрушались быстро. Через несплошности в них проникает жидкая фаза золы, вызывающая окисление под защитной пленкой. Попытки защитить сплав покрытиями из благородных металлов также не дали положительных результатов, так как даже платина не обладает достаточной стойкостью в контакте с пятиокисью ванадия. Более стойкими оказались диффузионные защитные покрытия, получаемые путем силицирова-ния, однако силицированный слой очень хрупок. До настоящего времени не удалось найти покрытие, которое обеспечило бы надежную защиту от коррозии в контакте с пятиокисью ванадия.  [c.67]

Покрытие приобретает полублестящий металлический вид, аморфную структуру и является сплавом никеля с фосфором. Для повышения защитных свойств никелевых покрытий применяют термооксидирование деталей в воздушной среде при температуре 900 °С в течение 1 ч. В результате процесса на поверхности никеля образуется слой NiO сине-зеленого цвета толщиной 5...7 мкм.  [c.441]

Интерметаллиды оказывают определяющее влияние на упрочнение в аустенитных и мартенситностареющих ста лях, многих жаропрочных сплавах на никелевой и кобаль товой основах, а также на свойства жаростойких защитных покрытий В ряде жаропрочных ставов содержание ин терметаллических фаз может достигать 55—65 %  [c.67]

Жаростойкие покрытия. Для повышения сопроти1вляемости никелевых сплавов окислению при высоких температурах находят применение различные защитные покрытия на поверхности лопаток. Наиболее распространенным методом является диффузионное насыщение поверхностного слоя детали алюминидами. Насыщение ведется либо в порошках с хлоридами (порошковое алитирование), либо окраской (шликерным методом) с последующим диффузионным отжигом. Кроме того, получают распространение хромоалити-рование в вакууме и нанесение многокомпонентных покрытий. Менее жаропрочные сплавы, работающие при умеренных температурах, покрывают жаростойкой эмалью [52].  [c.142]


При термоциклическом нагружении существуют три области, характеризующие разрушение различного характера область усталостного разрушения, область смешанного и область статического разрушения [28]. Конкретное соотношение величин Де, Гщах, обусловливает тот или иной вид разрушения. Аналогичные данные получены и по другим сплавам. Они свидетельствуют о необходимости учета для характеристики типа разрушения всех факторов, определяющих долговечность при термической усталости. Неучет одного из них может привести к неправильным ёыводам о причинах разрушения. Необходимо отметить, что указанные факторы—амплитуда деформации, длительность и температура цикла являются основными, но не единственными, определяющими вид разрушения. Не изменяя в целом общих закономерностей, большое значение имеют технологические и эксплуатационные факторы, например, способ и режим выплавки металла, влияние среды, защитные покрытия. Так, вакуумная выплавка никелевого сплава существенно повышает прочность границ зерен, вследствие чего в одних и тех же условиях нагружения смещается область значений величин Де, Тт х, in, в которой разрушение происходит по границам зерен. Наоборот, при активном повреждении границ зерен, например при эксплуатации в газовых средах или в случае склонности материала к межкристаллитной коррозии, разрушение от термической усталости почти всегда начинается по границам зерен.  [c.176]

Защитные металлические покрытия могут получаться различными способами электролитическим (гальванические покрытия), металлизацией (покрытие расплавленным металлом), совместной, прократкой (двухслойные металлы), погружением (горячие покрытия), диффузионным (термодиффузионные покрытия), химическим и контактным. Недостатком всех металлических защитных покрытий является их пористость исключение составляют биметаллы. Покрытия могут быть анодными (цинковые) или катодными (никелевые, медные). Анодные покрытия лучше защищают металл, но только на срок до своего разрушения. Катодные покрытия являются защитными только при условии их сплошности и. отсутствия пор.  [c.134]

Применение стойких сплавов и защитных покрытий. Для особо ответственных элементов оборудования в качестве мероприятия по предотвращению сероводородного растрескивания можно предложить переход на некоторые полностью устойчивые к этому виду разрушения цветные сплавы. Полной стойкостью к этому виду разрушения практически обладают никелевые сплавы монель и инконель. Не подвергаются сероводородному растрескиванию также сплавы типа Хастеллой В и Хастеллой С (состоящие из никеля, молибдена и хрома), сплавы никеля с бором и кобальтхромволь-фрамовые сплавы (стеллиты). Недостатком этих материалов является высокая стоимость и дефицитность. Защита от растрескивания таким методом удешевляется при употреблении биметаллических листов с плакирующим слоем из указанных сплавов.  [c.103]

Разупрочняющее действие коррозии растет с повышением прочности материала, и поэтому для сталей с а >40 кГ1мм коррозионный предел выносливости почти не повышается. Так, из рис. 377 видно, что при коррозии в воде для всех испытывавшихся сталей (углеродистых, никелевых хромоникелевых и хромомолибденовых), почти независимо от их статической прочности, пределы выносливости получакЬ Ся около 12—18 кГ1мм . И чем более прочна сталь, тем больше снижается ее выносливость в коррозионной среде. Ослабить вредное влияние коррозионной среды можно азотированием, наклепом или при помощи защитных покрытий (окраски, покрытия прорезиненными тканями и т. п.).  [c.417]

Эффективность смазывающего действия защитных покрытий при штамповке стали меньше, чем при штамповке титановых и никелевых сплавов. Например, при штамповке коррозионностойких сталей типа 15Х4НМВЗ средние давления уменьшаются за счет применения покрытия ЭВТ-10 на 10—20% (рис. 17, б).  [c.118]

Конструктивные мероприятия, увеличение сечений переходов, устранение отверстий и запилов, защитные покрытия, катодная защита и ингибиторы увеличивают стойкость. Поверхностные слои с напряжениями сжатия (например, азотированные слои, никелевые покрытия с внутренними напряжениями сжатия) периодически выравнивают появляющиеся растягивающие напряжения [139],  [c.49]


Смотреть страницы где упоминается термин Защитные покрытия никелевые : [c.87]    [c.96]    [c.261]    [c.244]    [c.239]    [c.42]    [c.380]    [c.64]    [c.159]    [c.172]    [c.195]    [c.69]    [c.562]    [c.158]    [c.47]    [c.261]    [c.266]    [c.237]    [c.239]    [c.243]    [c.243]   
Коррозия и защита от коррозии (1966) -- [ c.588 , c.604 , c.662 ]



ПОИСК



Покрытие защитное

Покрытие никелевые

Ч никелевый



© 2025 Mash-xxl.info Реклама на сайте