Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел текучести стали жаропрочной

Углерод увеличивает предел прочности, предел текучести стали, снижает ее пластичность и ударную вязкость. Кремний повышает прочностные и снижает пластические свойства, повышает жаростойкость (окалиностойкость) стали. Марганец влияет на прочность и прокаливаемость стали (увеличивает). Уменьшение пластичности стали наблюдается при содержании марганца более 1,5 %. В высоколегированных жаропрочных сталях марганец применяют для частичной замены дефицитного никеля. Алюминий используют для повышения жаропрочности и жаростойкости стали.  [c.222]


Молибден даже в небольших количествах (0,25—0,55 %) существенно повышает временное сопротивление разрыву и предел текучести стали при высоких температурах. Хром больше всего влияет на повышение жаростойкости стали. При больших количествах хрома повышается сопротивляемость стали коррозии. Никель обычно применяется вместе с другими легирующими элементами, так как повышает ударную вязкость, но без других примесей не придает стали жаропрочности и жаростойкости. Ванадий, повышая временное сопротивление разрыву и предел текучести стали, обычно используется совместно с хромом и молибденом. Молибден, хром, никель, ванадий и вольфрам повышают закаливаемость стали, что усложняет горячую обработку стали давлением. Марганец и кремний вводятся в сталь для раскисления.  [c.284]

Молибден даже в небольших количествах (0,25—0,55%) существенно повышает временное сопротивление разрыву и предел текучести стали при высоких температурах. Хром больше всего влияет на повышение жаростойкости стали. При больших количествах хрома повышается сопротивляемость стали коррозии. Никель обычно применяется вместе с другими легирующими элементами, так как повышает ударную вязкость, но без других примесей не дает стали жаропрочности и жаростойкости. Ванадий, повышая временное сопротивление разрыву и  [c.264]

Условие (7-3) необходимо учитывать, если расчетная температура стенки превышает 425° С для углеродистых и низколегированных марганцовистых сталей, 475° С — для низколегированных жаропрочных сталей и 550° С — для сталей аустенитного класса. В каждой стали возможны некоторые колебания величин временного сопротивления, предела текучести и предела длительной прочности из-за колебаний химического состава и режима термической обработки, а также и по другим причинам. Коэффициент запаса прочности должен обеспечить надежную работу элементов котла при любых практически возможных отклонениях характеристик прочности от средних. В Нормах приняты следующие запасы прочности ит = %.п=1,5 и в = 2,6.  [c.363]

Коэффициенты запаса прочности при расчетах на статическую прочность можно классифицировать по роду металла — деформируемому (поковки, штамповки, прокат) или литому, а также исходя из температуры. Последняя определяет для каждой марки стали и сплава основные характеристики, к которым применяется коэффициент запаса. Так, например, для углеродистых сталей, начиная примерно с 350° С, необходимо принимать во внимание также ползучесть металла и относить коэффициенты запаса к длительным характеристикам, а не только к пределу текучести при рабочей температуре. Для теплоустойчивых и жаропрочных сталей перлитного класса (хромистых нержавеющих и аналогичных им) эта температура составляет примерно 430°С, а для аустенитных 480—520° С, в зависимости от марки стали. Это верхние пределы умеренных температур для данных классов деталей.  [c.30]


Опыт эксплуатации энергетического оборудования и результаты многочисленных исследований убедительно свидетельствуют о том, что традиционный подход при разработке конструкционных и жаропрочных сталей в достижении высоких показателей расчетных характеристик механической прочности (предела текучести и предела длительной прочности при рабочей температуре) во многих случаях не обеспечивает требуемой надежности, долговечности конструктивных элементов.  [c.181]

Никель в количестве не менее 9% вводят в жаропрочные нержавеющие стали для получения аустенитной структуры. Обычно вместе с никелем в состав стали добавляют хром. Никель — дорогой и дефицитный легирующий элемент. Для стабилизации структуры и снижения склонности к межкристаллитной коррозии в аустенитные стали вводят титан и ниобий, которые связывают практически весь углерод в тугоплавкие карбиды. Избыточное содержание титана и ниобия приводит к образованию интерметаллических соединений и, как следствие, к охрупчиванию стали. В перлитную сталь для барабанов паровых котлов вводят никель в количестве около 1 % для повышения предела текучести.  [c.79]

Жаропрочные стали и сплавы в своем составе обязательно содержат никель, который обеспечивает существенное увеличение предела длительной коррозионной прочности при незначительном увеличении предела текучести и временного сопротивления, и марганец. Они могут дополнительно легироваться молибденом, вольфрамом, ниобием, титаном, бором, иодом и др. Так, микролегирование бором, а также редкоземельными и некоторыми шел очно-земельными металлами повышает такие характеристики, как число оборотов при кручении, пластичность и вязкость при высоких температурах. Механизм этого воздействия при микролегировании основан на рафинировании границ зерна и повышении межкристаллитной прочности. Химический состав и структура этих сталей весьма разнообразны.  [c.175]

При повышении содержания титана растут временное сопротивление предел текучести длительная прочность (жаропрочные стали).  [c.46]

При высокой температуре наблюдается значительное снижение основных показателей, характеризующих прочностные свойства металлов и сплавов. Временное сопротивление Og и предел текучести зависят от времени пребывания под нагрузкой и скорости нагружения, так как с повышением температуры металл из упругого состояния переходит в упругопластическое и под действием нагрузки непрерывно деформируется (ползучесть). Температура, при которой начинается ползучесть, у разных металлов различная для углеродистых сталей обыкновенного качества ползучесть наступает при температуре выше 375 °С, для низколегированных - при температуре выше 525 °С, для жаропрочных - при более высокой температуре.  [c.38]

При ковке дисков из высоколегированных жаропрочных сталей благоприятное изменение схемы напряженного состояния достигается применением горячих прокладок из мягкой листовой стали и спаренной осадкой заготовок. Основным условием принудительного течения металла вблизи контактов является более низкий предел текучести материала прокладки по сравнению с материалом заготовки при температуре ковки. Последнее достигается выбором материала прокладок, а также условиями их подогрева. Наиболее целесообразно производить нагрев прокладок совместно с заготовками и подавать их под пресс в виде стопы во избежание их быстрого остывания.  [c.516]

Легирование стали имеет назначение повысить ее прочность и сопротивляемость окалинообразованию при высокой температуре. В качестве легирующих присадок применяют хром, молибден, никель, ванадий, титан, вольфрам, ниобий, марганец и бор, которые добавляются в сталь в различных комбинациях. Хром вводят в сталь для повышения ее жаростойкости, т. е. способности противостоять кислородной коррозии при высокой температуре наличие в стали 12— 14 % хрома делает ее нержавеющей. Молибден добавляют для повышения жаропрочности — повышения предела прочности и текучести стали при высоких температурах, а также для улучшения других ее свойств. Никель повышает вязкость стали, ее жаропрочность и сопротивляемость старению. Для повышения сопротивляемости ползучести к низколегированной хромомолибденовой стали добавляют ванадий и ниобий. Содерл ание марганца в стали в пределах 0,3—0,8 % определяется технологическими требованиями процесса ее выплавки, а содержание марганца в стали в количестве 0,9—1,5 % повышает ее прочность. Легирующие элементы в марках стали обозначают следующими буквами Б — ниобий, В — вольфрам, Г — марганец, М — молибден, Н — никель, Р — бор, С — кремний, Т — титан, Ф — ванадий, X — хром.  [c.435]


Предел текучести характеризуется таким напряжением, при котором сталь начинает пластически деформироваться. Стали, применяемые в котлостроении, должны иметь высокую пластичность, т. е. обладать способностью воспринимать без разрушения остаточную деформацию. Это требование связано с технологией изготовления парогенераторов и водогрейных котлов, а также с условиями их работы, при которых происходят различные температурные деформации. Кроме того, котельные стали должны обладать достаточно высокой ударной вязкостью, высокой сопротивляемостью старению, жаропрочностью, повышенной сопротивляемостью ползучести и большей прочностью по Сравнению с обычными углеродистыми сталями. Свойства стали в основном зависят от ее химического состава, метода изготовления и последующей обработки.  [c.283]

Предел текучести легких сплавов 429 - стали 429 — Изменение от температуры 432 -— стали жаропрочной 432  [c.553]

В процессе эксплуатации углеродистой и низколегированных жаропрочных сталей имеет место тенденция к снижению временного сопротивления и предела текучести при комнатной температуре. Более резкое разупрочнение обычно наступает на третьей стадии ползучести. Такие трубы необходимо заменять.  [c.167]

Рассмотрим эти свойства подробнее. Жаропрочность стали является одной из важнейших характеристик, определяющей пригодность стали для работы при повыщенных температурах. Металлы, на которые воздействует нагрузка, которая немного меньше предела текучести, при высоких температурах обладают склонностью медленно и непрерывно деформироваться. Поэтому при длительной работе детали в условиях высоких температур необходимо оценивать способность данного металла к накоплению пластической деформации во времени.  [c.69]

Для изготовления деталей, работающих при температурах до 450 °С, применяют углеродистые стали марок ЗПС, ЗСП, ЗКП, 10, 15, 20, 35, 40, 45, 20Х, 40Х, 65Г (см. табл. 3.1). Для деталей, работающих до 350 °С, расчет на прочность ведется по пределу текучести, а свыше 350 С следует пользоваться характеристиками ползучести и длительной прочности. Механические, жаропрочные и физические свойства углеродистых сталей даны в табл. 3.6, 3.7 и на рис. 3.1 [1].  [c.86]

Жаропрочность сталей (сплавов) и сварных швов зависит от их химического состава и структуры. Так, например, обычные углеродистые конструкционные стали под действием напряжений ниже предела текучести могут бесконечно длительное время не разрушаться при обычной температуре, а при высоких температурах под действием даже несколько меньших напряжений (ниже предела текучести при данной высокой температуре) постепенно деформируются и затем разрушаются. Такое явление называется ползучестью металла. Элементами, повышающими сопротивление ползучести стали (ее жаропрочность), являются молибден, вольфрам, хром, марганец. Находясь в твердом растворе стали, эти элементы упрочняют ее (повышают силу межатомной связи в кристаллической решетке при высоких температурах), повышая тем самым сопротивление ползучести. Присутствие в стали равномерно распределенных карбидов также повышает ее жаропрочность.  [c.93]

При повышенных температурах для углеродистой стали (приблизительно 300— 350° С) наблюдается снижение предела текучести, и поэтому эта величина уже не может служить критерием прочности материала. Таким образом, принято считать, что указанная температура является пределом, при котором возможно применять углеродистые стали для легированных сталей этот верхний предел не превышает 400—500 С, поэтому для работы при более высоких температурах необходимо применение специальных жаропрочных и жаростойких сталей и специальных сплавов.  [c.80]

Низколегированные теплоустойчивые стали должны обладать повышенной механической прочностью при высоких температурах и при длительных постоянных нагрузках, а также достаточной жаростойкостью. Прочность при высоких температурах, кроме обычных характеристик (временное сопротивление, предел текучести и др.), оценивается особыми критериями механической прочности в нагретом состоянии. В большинстве случаев жаропрочность определяется величиной предела ползучести и длительной прочностью.  [c.515]

Налипание жаропрочных и коррозионно-стойких сталей на рабочую кромку матрицы объясняется тем, что они имеют более высокий предел текучести и равномерное относительное сужение при растяжении по сравнению с малоуглеродистыми сталями. В связи с этим при вытяжке контактное давление на кромке матрицы соответственно увеличивается. Это приводит к налипанию металла, вызывающего появление задиров на поверхности детали.  [c.182]

Лопатки последней ступени могут быть изготовлены из сплавов на титановой основе. В числе широко применяемых сплавов на основе титана можно назвать сталь ВТ-5. Сплав ВТ-5 достаточно пластичен и хорошо сваривается, плотность этого сплава равна 4,5 г/см . Предел текучести при 20" С по своей величине не уступает пределу текучести сталей 1X11МФ и 1Х12ВНМФ. Однако следует учитывать, чтО сплавы на титановой основе ползут даже при комнатной температуре при расчетах на прочность следует принимать во внимание в первую очередь величину предела длительной прочности и предела ползучести, а не только предел текучести. Кованые прутки поставляются диаметром до 250 мм, по АМТУ 534—67 с оо,2 = 65ч-85 кгс/мм , 65=10%, ф = 25%, 6 н З кгс-м/см . Сплав применяют без упрочняющей термической обработки. Он обладает умеренной жаропрочностью [24, 117]. Существуют и другие хорошо освоенные марки титановых сплавов.  [c.116]


Существенно различное влияние частоты при циклическом нагружении в условиях напряжений <Га, больших и меньших предела упругости <Гу, связано с тем, что при <г > <Гу долговечность определяется преимущественно размахом кратковременной пластической деформации АСпл, на который время нагружения влияет значительно слабее, чем на размах деформации ползучести, обусловливающий ширину петли гистерезиса при о а < <Гу. В связи с этим при одних и тех же значениях Ле изменение периода цикла приводит к существенно разным результатам для материалов с высокими и низкими значениями пределов текучести (например, жаропрочные сплавы на никелевой основе с О а, > 750 МПа и аустенитные стали с <Год 200 МПа).  [c.186]

В то же время высокие требования к качеству изделий из нержавеющих, жаропрочных сталей часто требуют 100%-ного контроля механических свойств. Однако в силу существующих методик прямых испытаний механических свойств 100%-но можно контролировать только твердость, а предел текучести, предел прочности, относительное удлинение и сужение —только выборочно на образцах по твердости — по специальным таблицам. Но на мноТих изделиях даже твердость, по Роквеллу или Бринеллю, не всегда удается замерить — это детали сложной конфигурации, большие по весу и объему сварные изделия. Тогда прибегают к сравнительным методам (например, по методу Польди). Вот почему для этого класса сталей важны разработка и внедрение неразрушающих методов контроля механических свойств и качества термической обработки.  [c.94]

Хромоникелевые стали ЭИ 123 и ЭИ405 обладают более высокими, чем хромистые стали, жаропрочностью и коррозионной стойкостью. Они отличаются также большой пластичностью, но значительно меньшим, чем у стали 2X13, пределом текучести при комнатной температуре. При этом можно отметить, что характер термообработки стали ЭИ 123 не так сильно влияет на ее механические показатели, как у стали 2X13.  [c.156]

Сравнение высоколегированной жаропрочной стали ХН35ВТ с менее прочной, но пластичной сталью Х16Н9М2 свидетельствует о преимуществе последней по характеристике распространения термоусталостной трещины. Это объясняется тем, что при одинаковой температуре предел длительной прочности (даже 100 ч) стали ХН35ВТ значительно ниже предела текучести. Следовательно, термоциклическая деформация в концентраторе вызывает остаточные напряжения, превышающие предел длительной прочности стали и релаксирующие в период выдержки при максимальной температуре цикла.  [c.147]

Расчетное допускаемое напряжение материала трубы при рабочей температуре 0, определяют умножением номинального допустимого напряжения Одоп на поправочный коэффициент т], учитывающий особенности конструкции и эксплуатации трубопровода. Для трубопроводов и поверхностей нагрева, находящихся под внутренним давлением, г) = 1. Номинальное допускаемое напряжение принимается по наименьшей из величин, определяемых гарантированными прочностными характеристиками металла при рабочих температурах с учетом коэффициентов запаса прочности для элементов, работающих при температурах, не вызывающих ползучесть, — по временному сопротивлению и пределу текучести Для элементов, работающих в условиях ползучести, у которых расчетная температура стенки превышает 425°С для углеродистых и низколегированных марганцовистых сталей, 475 С для низколегированных жаропрочных сталей и 540°С для сталей аустенитного класса, — по временному сопротивлению, пределу текучести и пределу длительной прочности. Расчет на прочность по пределу ползучести Нормами не предусматривается, так как соблюдение необходимого запаса по длительной прочности обеспечивает прочность и по условиям ползучести. В табл. 8-6 приведены значения номинальных допускаемых напряжений для некоторых сталей.  [c.148]

Температурный интервал резкого снижения предела текучести у конструкционных сталей 450—500 °С, у аустеннтных хромоннке-левых >500 °С, у жаропрочных деформируемых сталей >700 С.  [c.44]

Легированные конструкционные стали, обладающие в активных водородсодержащих средах требуемыми механическими свойствами временным сопротивлением, пределом текучести, вязкостью, достаточной жаропрочностью. Особый химический состав сталей позволяет им при высоких температурах и давлениях сохранять некоторую условную или абсолютную стойкость против воздействия водорода. Водород реагирует с углеродом, содержащимся в карбиде железа, с образованием метана в результате происходит охрупчивание, падение прочности (в том числе когезивной, межзе-ренной), и при одновременно действующей растягивающей нагрузке может произойти катастрофическое разрушение. Обычно для ограничения таких явлений проводится легирование хромом, образующим более стойкие кар< иды, в меньшей степени взаимодействующие с водородом.  [c.234]

На рис. 2.42 представлены диаграммы статическбго е динамического деформирования жаропрочной стали. Для пластичны.к материалов динамический предел текучести приблизительно равен Под ао,ад следует понимать максимальные напряжения цикла, соответствующие остаточной пластической деформации 0,2%.  [c.74]

Изменение свойств в працессе эксплуатации. Изменение свойств материалов в процессе эксплуатации влияет на кинетику деформирования и накопления повреждаемости при ползучести. Следовательно, его необходимо учитывать при дальнем прогнозировании ресурса. Например, в жаропрочных сталях перлитного класса увеличение предела текучести приводит к уменьшению показателя к уже при малом времени разрушения, что способствует более раннему переходу к межзеренному разрушению с образованием клиновидных трещин. При этом зависимость предельной пластической деформации от времени испытания более сильная. Уменьшение предела текучести, в частности, вследствие разупрочнения при длительной эксплуатации, повышает интенсивность процесса  [c.30]

Жаропрочность — сопротивление механическим нагрузкам при высоких температурах. Стали углеродистые и легированные не чувствительны к скорости нагружения образцов, если температура испытаний не превосходит 350° С. При температурах испытаний выше 350° С скорость нагружения влияет тем значительнее, чем выше температура испытаний. При некоторых нагрузках, лежащих ниже предела текучести, но нри температурах выше 350° С часто наблюдается остаточная деформация во времени под действием напряжений. Это явление получило название ползучести. Явление ползучести наблюдается во всех случаях деформации металлов при повышенных температурах, если температура при деформировании лежит выше температуры рекристаллизации или значения напряжений находятся выше предела унругости. Для расчета деталей работающих длительное время  [c.217]

Наиболее широкое применение в промышленности получила сталь 1Х18Н9 и подобные ей стали с добавками титана и ниобия. Сталь 1Х18Н9 после закалки с 1050° приобретает структуру чистого аустенита. в котором все примеси находятся в твердом растворе. В этом состоянии сталь обладает наивысшей пластичностью и вязкостью, низким пределом текучести и высокими жаростойкостью и жаропрочностью. В табл. 12 приведены основные показатели свойств стали 1Х18Н9. Для сравнения в этой же таблице приведены данные для низкоуглеродистой стали 10. Окалиностойкость характеризуется максимальной температурой, при которой возможна длительная работа конструкции без опасного нарастания слоя окалины. Жаропрочность измеряется так называемым  [c.493]


Имеется несколько областей амплитуд колебаний, в которых логарифмический декремент колебаний ведет себя по-разному при изменении амплитуды. При малых колебаниях логарифмический декремент не зависит от амплитуды колебаний. Эта область в физике металлов называется областью амплитудно-независимого внутреннего трения. Для химически чистых металлов, в частности для монокристаллов, эта область охватывает амплитуды относительной деформации от О до 10" . Для технических сплавов эта область шире, и для сталей она простирается почти вплоть до амплитуд напряжений, близких к пределу текучести или усталости, что соответствует амплитудам деформаций е — 10 - -- 10" . Для н езакаленных углеродистых и малолегированных сталей область амплитудно-независимого трения уже, для закаленных легированных сталей — шире. Для жаропрочных сплавов, в частности сплавов титана, область амплитудно-независимого трения охватывает амплитуды деформаций вплоть до е = 5-10" . В области, где декремент не зависит от амплитуды, не зависят от амплитуды и прочие характеристики затухания — постоянная времени демпфирования и коэффициенты внутренней вязкости. Типовой график амплитудной зависимости декремента от амплитуды колебаний представлен на рис. 4, а.  [c.21]

Сравнительная сложность уравнения (67) и наличие взаимных, в ряде случаев еще недостаточно исследованных связей между некоторыми величинами, входящими в него, не позволяют пока использовать формулу (67) для непосредственного расчета сил Рг+. Вместе с тем достоинством этой формулы является то, что она учитывает не ТОЛ1КО разупрочнение материала, возникающее при нагревании заготовки плазменной дугой, но также и термические напряжения, влияющие на состояние обрабатываемого материала и оказывающие воздействие на процесс стружкообразования, а значит, и на силы В связи с этим анализ формулы (67) позволяет определить направление влияния на того или иного фактора и таким образом выяснить целесообразные пути наладки процесса ПМО в различных случаях. Из формулы (68) следует, что нагрев при ПМО необходимо проводить по-разному для различных групп металлов. Разделим условно все металлы, подвергающиеся обра- ботке с нагревом плазменной дугой, на три группы. Первая из них включает материалы, предел текучести которых ав(0) существенно снижается уже при нагреве до 200...300°С. К этой группе можно отнести стали 22К, 12Х18Н9Т и аналогичные им, а также титановый сплав ВТЗ-1. Вторая группа включает большинство углеродистых и легированных сталей, интенсивное разупрочнение которых начинается с температур порядка 300...400°С. Наконец, третью группу составляют жаропрочные материалы, предел текучести которых 08(0) незначительно меняется до температур 600...700°С. Как уже отмечалось, начало появления пластических деформаций в заготовке зависит от предела текучести обрабатываемого материала при данной температуре. Поэтому для создания временных термических напряжений в материалах третьей группы потребуются более высокие температуры нагрева, чем для материалов первой и второй групп. Жаропрочные сплавы следует обрабатывать в условиях высокотемпературного плазменного нагрева, что подтверждается работами, выполненными в Грузинском политехническом институте, ИЭС им. Е. О. Патона, ЦНИИТМАШе. Исследователи получили яаилучшие результаты при точении заготовок из жаропрочных материалов, нагретых к моменту подхода в зону резания до 700... 900°С. Для достижения столь высоких температур предварительного подогрева применяли два плазмотрона, а также нагрев осциллирующей дугой, что обеспечивало необходимое накопление теплоты в срезаемом слое металла. Значительный разогрев металла вызы-  [c.82]

Материалы первой группы получают при плазменном нагреве пластические деформации на значительной части срезаемого слоя. Однако последние не вызывают появления существенных термических напряжений при охлаждении этого слоя на участке между пятном нагрева и зоной резания. Причиной этого является низкий предел пластичности и малая склонность к наклепу металлов первой группы при деформировании их при температурах, превышающих 200...300°С. Поэтому здесь, как и при обработке заготовок из жаропрочных материалов, ведущее место в разупрочнении занимает температура подогрева. Особенностью материалов второй группы является малое влияние температур в диапазоне до 300... 400°С на предел текучести аД0) и резкое снижение 08(0) при дальнейшем его нагреве. Поэтому пойышение производительности при ПМО заготовок из этих сталей обеспечивает характер напряженного и деформированного состояния металла при его подходе к зоне резания. Для большинства сталей второй группы при охлаждении повышение предела текучести происходит быстро до температур порядка 400...300°С, а затем приращение Св(в) становится незначительным. В этих условиях дальнейшее охлаждение металла сопровождается тем большим наклепом поверхности, чем выше склонность его к упрочнению при деформировании в области относительно невысоких температур. Максимум повышения постоянной пластичности К будет на поверхности, подвергшейся плазменному нагреву, в связи с чем металл получит переменную по толщине среза пластичность и предел текучести, что может влиять на процесс стружкообразования и силы резания.  [c.83]

Из перечисленных выше новых конструкционных металлов и сплавов наибольшее распространение в химическом машиностроении нащел титан. Титан обладает исключительно высокими прочностными показателями, жаростойкостью и жаропрочностью, малым удельным весом, высокой сопротивляемостью к эрозии и к усталостным напряжениям, отсутствием склонности к межкристаллитной коррозии, благоприятными технологическими свойствами и по своей коррозионной стойкости превосходит в ряде случаев высоколегированные кислотостойкие стали. Ниже приводятся основные физикомеханические свойства технически чистого титана марки ВТ1 (0,3% Fe 0,15% Si 0,05% С 0,15% Ог 0,015% Hj 0,04% N2 остальное Ti). Уд. вес 4,5 з/сж температура плавления 1725° С коэффициент линейного расширения (в интервале О—100° С) 8,2 10 теплопроводность 0,039кал см-сек-град, электропроводность по сравнению с электропроводностью меди, принятой за 100, 3,1 предел прочности 45—60 ке1мм предел текучести 25—50 кг/мм относительное удлинение — не менее 25%, относительное сужение не менее 50% твердость по Бринелю 160—200 модуль упругости 10 500—11 ООО кг/мм .  [c.247]

Если предел текучести материала низкий, а пластичность значительна (мягкие стали, жаропрочные сплавы типа ХН77ТЮР при  [c.89]


Смотреть страницы где упоминается термин Предел текучести стали жаропрочной : [c.194]    [c.374]    [c.139]    [c.281]    [c.222]    [c.222]    [c.172]    [c.44]    [c.622]   
Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.432 ]



ПОИСК



Жаропрочность

Жаропрочные КЭП

Жаропрочные стали 115, 156—177

Предел стали

Предел текучести

Предел текучести легких сплавов стали жаропрочной

Предел текучести стали

Текучесть



© 2025 Mash-xxl.info Реклама на сайте