Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Давление дисперсия относительная

В обогреваемых каналах современных энергетических установок, работающих в основном в диапазоне давлений 6—20 МПа, основными режимами течения пароводяной смеси являются пузырьковый и дисперс но-кольцевой. Данных по режимным параметрам, определяющим границу перехода одного режима течения в другой, очень мало. Из работы [2.16] видно, что разность относительных энтальпий Дг между началом поверх-  [c.43]

Классическая теория, основывающаяся на уравнениях Навье — Стокса, приводит к известным формулам акустической дисперсии Стокса — Кирхгофа. Для значений г, превышающих число 10, т. е. когда имеют дело с относительно малыми акустическими частотами и большими давлениями, относительная величина коэффициента поглощения звука невелика. Поэтому скорость распространения звука практически остается постоянной величиной. Следовательно, акустическая дисперсия отсутствует.  [c.55]


Рассмотрим особенности устройства масс-спектрометров на примере статического масс-спектрометра отечественного производства МИ-1305, предназначенного для анализа состава газов и паров легколетучих жидкостей. В масс-анализаторе прибора для разделения ионов по массам и фокусировки ионного пучка используется секторное магнитное поле. Радиус центральной траектории 200 мм при дисперсии 1,45 мм на 1% относительной разности масс. Вакуумная система состоит из трех частей. В фор-вакуумной части используется насос типа ВН-4ИМ, в высоковакуумной —ДРН-10. Анализируемый пар вводится в источник ионов через третью часть вакуумной системы — систему напуска. Она состоит из двух идентичных каналов один для напуска одной или двух анализируемых проб, а другой — для напуска эталонных проб с известным составом. Обязательным является контроль давления в вакуумной системе. Для этого используются манометры с термопарным измерительным преобразователем (для форвакуумной части) и с ионизационным преобразователем (для высоковакуумной части). Ионизация паров осуществляется методом электронной бомбардировки (наиболее широко распространенный способ) в ис точнике ионов используется типовая ионная коллимирующая оптика по схеме ВИРА АН СССР [69]. Электронные блоки включают устройства для измерения ионных токов, давления, вакуумной блокировки, для контроля питания электромагнита и источника ионов.  [c.291]

Скорость звука в уксусной кислоте на частоте 250 кГц при температуре 20°С и атмосферном давлении равна 1194 м/с. При увеличении частоты до 3000 кГц относительная дисперсия скорости звука составляет около 1 %. Найти максимальный безразмерный коэффициент релаксационного поглощения, отнесенный к длине волны.  [c.28]

Сделаем одно замечание относительно сдвиговой вязкости и объемной вязкости. Микроскопическая картина сдвиговой вязкости, как мы говорили, нелокальна слой среды, движущейся с большей скоростью, захватывает соседний слой, движущийся с меньшей скоростью, ускоряя его и в свою очередь замедляясь. Для газов молекулярная картина этого процесса заключается в диффузии молекул из одного слоя в другой и обратно, сопровождающейся обменом количеством движения, что и приводит к выравниванию средних скоростей слоев. Для объемной вязкости обменного механизма нет, так как при всестороннем сжатии все участки среды находятся в одинаковых условиях. Поэтому в основе явления объемной вязкости должен лежать локальный механизм обычно это какой-либо релаксационный механизм. Термин релаксация применяют в случаях, когда давление, создаваемое внезапным изменением сжатия, постепенно убывает, стремясь к некоторому равновесному значению, отвечающему данному сжатию. Если время релаксации , характеризующее такое запоздание, не очень мало по сравнению с периодом звуковой волны, то в гармонической волне давление будет отставать по фазе от сжатия. Это приводит к некоторой частотно-зависящей добавке к давлению, которое имело бы место при таком же статическом сжатии. При низких частотах добавка равносильна появлению объемной вязкости. Для более высоких частот добавка приводит, помимо добавочного поглощения, к изменению скорости звука (дисперсия скорости).  [c.393]


Для инварианта Яг получим ту же формулу, что и в случае изотропного поля, Яг = Оа /Зк1. Хотя инвариант тензора Нг не изменился, соотношение между Яг и уменьшилось примерно вдвое за счет роста Н1 и Я . Иными словами, даже такая слабая анизотропия, как в случае — е, приводит к относительному выравниванию дисперсии компонент градиента давления.  [c.98]

Предшествующий анализ фильтрационной дисперсии до некоторой степени не учитывал того важного обстоятельства, что дисперсии подвержены макроскопические поля истинной концентрации примеси, флуктуирующие из-за нерегулярности поля скорости переноса. Это означает, что можно выписать динамические уравнения относительно истинной концентрации и фильтрационных характеристик — скорости фильтрации, давления и поставить задачу об осреднении всей замкнутой системы уравнений. Результатом этого будет установление связи между эффективными характеристиками фильтрационного переноса и полем средней концентрации. При этом становятся излишними предположения о возможности использования марковских моделей и т. п. Основная трудность такого способа анализа дисперсии связана с реализацией усреднения полной системы уравнений фильтрационного переноса.  [c.223]

Дисперсия параметров газа в камере и у дна узкого канала остается значительной в течение длительного времени. Это можно видеть из фиг. 6, на которой показано изменение во времени относительной флуктуации плотности Др (кривая /), давления в объеме Др (кривая 2) и давления возле дна узкого канала 6р (кривая 3). Зависимость относительной флуктуации плотности Др от длины Д/ = /2 - /[ зоны энерговыделения при подводе одного и того же количества энергии Д = 62.5 имеет немонотонный харак-  [c.119]

ЗАКОН [Бера для разбавленных растворов поглощающего вещества в непоглощающем растворителе коэффициент поглощения света веществом зависит от свойств растворенного вещества, длины волны света и концентрации раствора Био для вращательной дисперсии в области достаточно длинных волн, удаленной от полос поглощения света веществом, угол вращения плоскости поляризации обратно пропорционален квадрату длины волны Био — Савара — Лапласа элементарная магнитная индукция в любой точке магнитного поля, создаваемого элементом проводника с проходящим по нему постоянным электрическим током, прямо пропорциональна силе тока в проводнике, абсолютной магнитной проницаемости, векторному произведению вектора-элемента длины проводника на модуль радиуса-вектора, проведенного из элемента проводника в данную точку и обратно пропорциональна кубу модуля-вектора Бойля — Мариотта при неизменных температуре и массе произведение численных значений давления на занимаемый объем идеальным газом постоянно Брюстера отраженный свет полностью линейно поляризован при угле падения, равному углу Брюстера, тангенс которого должен быть равен относительному показателю преломления отражающей свет среды Бугера — Ламберта интенсивность J плоской волны монохроматического света уменьшается по мере прохождения через поглощающую среду по экспоненциальному закону J=Joe , где Jo — интенсивность света на выходе из слоя среды толщиной / а — показатель поглощения среды, который зависит от химической природы и состояния поглощающей среды и от волны света Бунзеиа — Роско количество вещества, прореагировавшего в фотохимической реакции, пропорционально мощности излучения и времени освещения Бернулли в стационарном потоке сумма статического и динамического давлений остается постоянной ]  [c.231]

ФАКТОР <есть причина, движущая сила какого-либо процесса, явления, определяющая его характер или отдельные его черты магнитного расщепления — множитель в формуле для расщепления уровней энергии, определяющий величину расщепления, выраженный в единицах магнетона Бора размагничивающий— коэффициент пропорциональности между напряженностью размагничивающего магнитного поля образца и его намагниченностью структурный—величина, характеризующая способность элементарной ячейки кристалла к когерентному рассеянию рентгеновского излучения, гамма-излучения и нейтронов в зависимости от внутреннего строения ячейки) ФЕРРИМАГНЕТИЗМ—состояние кристаллического вещества, при котором магнитные моменты ионов, входящих в его состав, образуют две или большее число подсистем (магнитных подрещеток) ФЕРРОМАГНЕТИЗМ—состояние кристаллического вещества, при котором магнитные моменты атомов или ионов самопроизвольно ориентированы параллельно друг другу ФИЛЬТРАЦИЯ—движение жидкости или газа через пористую среду ФЛУКТУАЦИЯ <есть случайное отклонение значения физической величины от ее среднего значения, обусловленное прерывностью материи и тепловым движением частиц абсолютная — величина, равная корню квадратному из квадратичной флуктуации квадратичная 01ли дисперсия) равна среднему значению квадрата отклонения величины от ее среднего значения относительная равна отношению абсолютной флуктуации к среднему значению физической величины) ФЛУОРЕСЦЕНЦИЯ — люминесценция, быстро затухающая после прекращения действия возбудителя свечения ФОРМУЛА (барометрическая — соотношение, определяющее зависимость давления или плотности газа от высоты в ноле силы тяжести Больнмаиа показывает связь между энтропией системы и термодинамической вероятностью ее состояния Вина устанавливает зависимость испускательной способности абсолютно черного тела от его частоты в третьей степени и неизвестной функции отношения частоты к температуре)  [c.292]


Звуковое давление р в акустич. волне, распространяющейся в среде с релаксацией, оказывается равным сумме давления ро, обусловленного только изменением плотности, и добавочного давления бр, возникающего из-за наличия релаксац. процесса. Это добавочное давление сдвинуто по фазе относительно иамевения плотности, что приводят к дополнит, (релаксац.) поглощению звука, из решения ур-ния (1) для гармония, волны мояшо видеть, что при разных частотах звука отклонение от равновесного значения различно, поэтому добавочное давление при том же изменения плотности оказывается разным при равных частотах. Соответственно скорость звука с = дp дpf также зависит от частоты, т. е. за счёт Р. а. возникает дисперсия скорости звука. Изменение с с частотой происходит от макс, значения с а нв высоких частотах (<вт 3> 1), когда процесс установления равновесия не успевает за изменениями плотности, до мин. значения с на низких частотах, когда равновесие полностью успевает установиться при колебаниях плотности и избыточное давление 6р 0.  [c.329]

Подставляя решение в виде бегущей волны, находим закон дисперсии для второго звука = S / sT/[(/ s y)f ], т.е. скорость второго звука = [S" PsT pn v)Y/ , где Су — теплоемкость единицы массы при постоянном объеме. В такой волне j и О (колебания происходят при постоянном объеме или давлении, причем су Ср), но тогда Vn pslpn)vs, т.е. сверхтекучий и нормальный компоненты колеблются в противофазе таким образом, суммарного потока вещества нет, поскольку скорость v центра масс компонентов близка к нулю (в то же время существует относительное движение сверхтекучего и нормального компонентов). Если вспомнить, что сверхтекучий компонент не переносит тепла, то становится понятным, что волны второго звука связаны с колебаниями температуры, а не плотности (в этом смысле показательно то, что в волновом уравнении для второго звука переменной является Т ). Уникальность НеП в том, что в нем существуют температурные волны, т.е. обратимые температурные возмущения, в отличие от необратимого распространения таких возмущений путем теплопроводности в других веществах. Следует заметить, что по отдельности оба компонента жидкого гелия испытывают сжатия и разрежения. Такие сжатия и разрежения сверхтекучего компонента, который, как уже говорилось, не переносит энтропия, сопровождаются обратимыми увеличениями и уменьшениями температуры. Сила, противодействующая этим изменениям, т. е. возвращающая сила, связана с градиентом химического потенциала (он вызван изменением температуры без изменения давления). Из уравнения движения для сверхтекучего компонента d s/dt = —V/x следует, что градиент химического  [c.115]

С этого времени в большом количестве проводятся эксперимен тальные и теоретические работы по исследованию дисперсии и пог лощения ультразвуковых волн в газах, а затем и в жидкостях, сре ди которых следует отметить работы Кнезера [9] и Бикара [10] К настоящему времени накопилось очень большое количество ра бот по измерению скорости и поглощения ультразвука в газах, в смесях газов, жидкостях, смесях различных жидкостей, растворах, электролитах, проведенных при разных физических условиях (температура, давление, плотность, фазовые переходы и т. д.). Результаты этих измерений важны не только для изучения молекулярных свойств газов и жидкостей, но также широко используются в технике для контроля протекания различных технологических процессов (по изменению скорости и поглощения звука). Методика этих измерений хорошо отработана и изложена во многих учебниках, поэтому мы не будем ее описывать. Отметим только, что на ультразвуковых частотах современные импульсные, фазовые и в особенности импульсно-фазовые методы позволяют получить относительную ошибку Ас/с 10 —10 , а абсолютное значение с измерять с точностью 10" %. Аппаратурная точность может быть выше, однако точность измерения скорости ограничивается трудностью поддерживать неизменными физические свойства среды (температуру, плотность, однородность, отсутствие потоков и т. д.) и неоднородностями акустического поля абсолютное значение а в области ультразвуковых частот можно измерять с ошибкой 2—5%. Трудности в определении коэффициента поглощения звука по результатам измерений также состоят в необходимости детального учета неоднородности излучаемого акустического поля, дифракционных эффектов, неизменности физических свойств среды. Для газов измерения на частотах выше нескольких МГц (при нормальном атмосферном давлении и комнатной температуре) затруднены из-за очень большого поглощения.  [c.42]

Как показали Эйкен и Нюман [577], определение положения максимума поглощения в спектре частот, часто необходимое при измерениях дисперсии звука, можно осуществить путем относительных интерферометрических измерений, что позволяет не учитывать рассмотренных выше мешающих эффектов уменьшения отражения, неоднородности звуковой волны и т. д. За исключением коэффициента поглощения, все остальные параметры опыта остаются практически без изменения, если меняется только давление газа. Но, как разъяснено выше ( 3, п. 3 этой главы), понижение давления равносильно увеличению частоты. Для определения положения максимума поглощения достаточно отметить в интерферометре Пирса отклонения гальванометра для двух положений отражателя, отстоящих друг от друга на известное число полуволн, и повторить эти измерения при различных давлениях. В максимуме поглощения отношение двух показаний гальванометра также должно пройти через максимум. При этом удобно строить график зависимости отношения показаний гальванометра от Ig pjp), где р —начальное давление. Описанный метод весьма удобен для определения времени установления по измерениям поглощения (см. п. 3 этого параграфа).  [c.331]


ПЕРЕНОСНОЕ ДВИЖЕНИЕ в механике, движение подвижной системы отсчёта по отношению к системе отсчёта, принятой за основную (условно считаемую неподвижной). См. Относительное движение. ПЕРЕОХЛАЖДЕНИЕ, охлаждение в-ва ниже темп-ры его равновесного перехода в др. агрегатное состояние Т ф п. или в др. кристаллич. модификацию (см. Полиморфизм). Фазовые переходы, связанные с отдачей теплоты конденсация, кристаллизация, полиморфные превращения) на нач, стадии, требуют, как правило, нек-рого П., содействующего возникновению зародышей новой фазы — мельчайших капель или кристалликов. Образование зародышей при Гф.п. затруднено тем, что они, обладая повыш. давлением или растворимостью, не могут находиться в равновесии с исходной фазой. В условиях, когда процессы возникновения и роста зародышей новой фазы протекают замедленно (перекристаллизация в тв. фазе, кристаллизация очень вязкой жидкости, напр, стекла, и др.), глубоким П. можно получить практически устойчивую фазу (в метастабильном состоянии) со структурой, характерной для более высоких темп-р. На этом основаны, напр., закалка сталей и получение стекла. Следует также отметить, что степень П. водяного пара в атмосфере влияет на хар-р выпадающих осадков (дождь, снег, град). ПЕРЕСТАНОВОЧНЫЕ СООТНОШЕНИЯ (коммутационные соотношения), фундаментальные соотношения в квант, теории, устанавливающие связь между последоват. действиями на волновую функцию (или вектор состояния) двух операторов Ь и расположенных в разном порядке (т. е. L-yL п L L ). П. с. определяют алгебру операторов (д-чисел). Если два оператора переставимы (коммутируют), т. е. LiL L Li, то соответствующие им физ. величины и могут иметь одновременно определённые значения. Если же их действие в разном порядке отличается числовым фактором (с), т. е. Ьф —Ьф с, то между соответствующими физ. величинами имеет место неопределенностей соотношение I, где Ail и ДЬа — неопределённости (дисперсии) измеряемых значений физ. величин 1 и 2- Важнейшими в квант, механике явл. П.с. между операторами обобщённой координаты q и сопряжённого ей обобщённого импульса р, qp—pq=ih. Если оператор L не зависит от времени явно и переставим с гамильтонианом системы Н, т, е. ЬЙ= НЬ, то физ. величина L (а также её ср. значение, дисперсия и т. д.) сохраняет своё значение во времени.  [c.529]


Смотреть страницы где упоминается термин Давление дисперсия относительная : [c.421]    [c.56]    [c.95]    [c.305]   
Единицы физических величин (1977) -- [ c.118 , c.191 ]



ПОИСК



Дисперсия

Дисперсия относительная



© 2025 Mash-xxl.info Реклама на сайте