Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение ведущее поступательное

Кулачковые механизмы находят широкое применение, особенно в приборах и машинах автоматического действия. Они предназначены для преобразования вращательного или возвратно-поступательного движения ведущего звена в возвратно-поступательное или возвратно-вращательное движение ведомого звена с остановками последнего заданной продолжительности.  [c.18]

Эти механизмы позволяют преобразовывать вращательное или винтовое движение ведущего звена в медленное прямолинейно-поступательное движение ведомого звена с большим выигрышем силы Домкраты, прессы, зажимные устройства) или с точным отсчетом пройденного пути (измерительные приборы, станки).  [c.51]


Эти механизмы позволяют получать движение ведомого звена практически по любому заданному закону. Ведущее звено (кулачок) обычно имеет вращательное движение, иногда поступательное. Ведомое звено выполняется в виде ползуна (рис. 37, а) или качающегося рычага (рис. 37, в) и часто снабжается роликом, который контактирует с внешней поверхностью открытого кулачка или входит в паз пазового кулачка. В быстроходных механизмах ведомое звено обычно имеет плоскость, которая касается выпуклой поверхности открытого кулачка (рис. 37, б).  [c.56]

Таким образом, винтовой механизм может быть применен как для преобразования вращательного движения в поступательное, так и обратно. На рис. 194, а показано устройство параллельных тисков, в которых винт 2, вращаясь в неподвижной гайке /, будет двигаться поступательно, т. е. будет ввинчиваться в гайку или вывинчиваться из нее. Винт 2 передает движение подвижной части тисков 3. Передача движения суппорту токарно-винторезного станка производится гайкой 1 (рис. 194, б), которая находится в направляющем пазу и перемещается при вращении винта 2. Ведущим звеном в обоих рассмотренных механизмах является винт.  [c.187]

Для преобразования поступательного движения ведущего звена в поступательное ведомого используются механизмы кулачковые (рис. 1.9, в), рычажные (рис. 1.10, д), клиновые (рис. 1.11, в).  [c.24]

Построение планов положений механизма и траекторий точек звеньев. Кинематическое исследование механизма целесообразно начинать с построения ряда его последовательных положений, соответствующих полному циклу движения. Закон движения ведущего звена, соединенного со стойкой вращательной парой, чаще всего задается уравнением Ф = / (0. а звена, соединенного со стойкой поступательной парой, уравнением S = / (i). Здесь Ф — угол поворота звена, S — перемещение звена at — время движения. В большинстве механизмов с вращающимся ведущим  [c.30]

По характеру преобразования движения фрикционные передачи делятся а) на передачи для преобразования вращательного движения ведущего звена во вращательное движение ведомого, при этом оси валов могут располагаться параллельно (рис. 13.1, а, е) или пересекаться под углом, обычно 2 = л/2 (рис. 13.1, б) б) передачи для преобразования вращательного движения в поступательное и наоборот (рис. 13.1, г, <3) в) передачи для преобразования вращательного движения в винтовое и наоборот (рис. 13.1, ( ).  [c.208]


Храповые механизмы. Храповые механизмы используются для преобразования колебательного движения ведущего звена во вращательное или поступательное движение с остановками ведомого звена. Кроме того, они применяются как механизмы, препятствующие движению ведомых звеньев в одном направлении и допускающие свободное движение их в противоположном направлении.  [c.250]

Одной из основных задач механизма является преобразование заданного движения его ведущего звена в заданное движение ведомого. В одних случаях выполнение этой задачи требует изменения характера движения (ведущее звено имеет вращательное движение, а ведомое должно иметь поступательное или наоборот, ведущее звено вращается, а ведомое имеет сложное движение и т. д.). Примерами таких механизмов являются кривошипношатунный (см. рис. 1), кулачковый (см. рис. 6) и т. п.  [c.34]

Например, для преобразования поступательного движения ведущего звена во вращательное ведомого может быть использо-  [c.107]

Задача кулачкового механизма в большинстве случаев состоит в преобразовании непрерывного движения ведущего звена (кулачка) в возвратно-поступательное или колебательное движение ведомого звена (стержня, толкателя).  [c.122]

Объемные насосы по характеру движения рабочих органов разделяют на роторные, крыльчатые и возвратно-поступательные. Роторным называют объемный насос с вращательным или вращательным н возвратно-поступательным движением рабочих органов независимо от характера движения ведущего звена насоса. Крыльчатые насосы отличает возвратно-поворотное движение, а возвратно-поступательные насосы — прямолинейное возвратно-поступательное движение рабочих органов независимо от характера движения ведущего звена.  [c.107]

Роторным называется объемный насос с вращательным и возврат но-поступательным движением рабочих органов независимо от характера движения ведущего звена насоса. К ним относятся зубчатые  [c.153]

Механизм трансформирует возвратно-поступательное движение звена 1 в возвратно-поступательное движение ползуна 3 с остановкой через каждый цикл движения ведущего звена 1. Рычаг 2 под действием захватов 10 и И, вращающихся вокруг неподвижных осей Л и В и скользящих вдоль своих осей, автоматически разъединяется и соединяется с ползуном 3. При движении ролика 7 по нижней горизонтальной части паза а — а ползун 3 остается неподвижным в продолжении одного цикла движения ведущего звена. Приспособление 8, 9 служит для того, чтобы заставить ползун 3 останавливаться каждый раз точно на одном и том же месте. Пружины 4, 5 я 6 служат для силового замыкания захватов и рычага 2,  [c.373]

Рис. 8.68. Механизм с периодически изменяющимся передаточным отношением. Рассматриваемый механизм преобразует вращательное движение в поступательное с постоянной скоростью на участке 2S. Центральный кривошипно-шатунный механизм (рис. 8.68, п), составленный из неподвижного центрального зубчатого колеса 1 и сателлита 2 с ведущим кривошипом 3, позволяет получить движение пальца А, установленного на сателлите, по эллипсу. Присоединяя к пальцу А прямую кулису (рис. 8.68,6), получим механизм с прямолинейным возвратнопоступательным движением ползуна 4. Равномерное движение звена 4 в пределах некоторого участка обеспечивается при следующих условиях Рис. 8.68. Механизм с периодически изменяющимся <a href="/info/206">передаточным отношением</a>. Рассматриваемый <a href="/info/253714">механизм преобразует</a> <a href="/info/2736">вращательное движение</a> в поступательное с <a href="/info/333387">постоянной скоростью</a> на участке 2S. Центральный <a href="/info/83824">кривошипно-шатунный механизм</a> (рис. 8.68, п), составленный из неподвижного центрального <a href="/info/999">зубчатого колеса</a> 1 и сателлита 2 с ведущим кривошипом 3, позволяет получить движение пальца А, установленного на сателлите, по эллипсу. Присоединяя к пальцу А прямую кулису (рис. 8.68,6), получим механизм с прямолинейным возвратнопоступательным <a href="/info/367209">движением ползуна</a> 4. <a href="/info/7854">Равномерное движение</a> звена 4 в пределах некоторого участка обеспечивается при следующих условиях

Ф. М. Диментберг, применив формулу Родрига конечного поворота для бивекторов, разработал метод исследования положений и перемещений пространственных механизмов. Для исследования механизмов по этому методу должны быть заданы схема механизма, его относительные постоянные линейные и угловые параметры и функции движения ведущих звеньев. Основными искомыми величинами являются комплексные углы, составленные звеньями, представляющие собой вещественные углы относительного поворота и относительное поступательное перемещение звеньев. Для отыскания этих параметров производятся следующие операции.  [c.118]

МЕХАНИЗМЫ ДЛЯ ПРЕОБРАЗОВАНИЯ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ В ПОСТУПАТЕЛЬНОЕ С РЕВЕРСИРОВАНИЕМ ВЕДУЩЕГО ЗВЕНА  [c.79]

Большинство обозначений для механизмов углового и частично линейного позиционирования приведено ранее (гл. 3). Для механизмов линейного позиционирования учитывалась возможность как поступательного, так и вращательного движения ведущего звена и приняты следующие обозначения для исходных зависимостей параметров от времени линейная скорость выходного V (t) и входного Уо (i) звеньев механизма, линейные ускорения а (() и перемещение I ((), усилие Р (t) на выходном звене и усилие Рдв (t) ИЛИ перепад давления Ар t) (обычно записываются давления в двух полостях двигателя) и входном звене механизма, мощность двигателя Л дв (t). При вращательном движении входного звена добавляется скорость соо (t).  [c.67]

Зубчатой передачей называется механизм, который посредством зубчатого зацепления преобразует или передаёт движение при соответствующем изменении сил или их плеч. Зубчатая передача связывает либо вал с валом, либо вал с рейкой. Зубчатая передача от ведущего вала (ведущих валов) к ведомому (ведомым) служит для того, чтобы угловые скорости этих валов и крутящие моменты на них находились в требуемом соотношении (по величине и направлению). Осуществляется это зубчатыми колёсами, т. е. такими телами, которые непрерывно и закономерно зацепляются друг с другом своими зубьями. Зубчатая передача от вала к рейке (или от рейки к валу) служит для преобразования вращательного движения в поступательное и крутящего момента в силу (или наоборот). Осуществляется она зубчатым колесом и рейкой.  [c.212]

ДОМ от гидравлического цилиндра или криво-шипно-кулисного механизма ведущим движением будет поступательное перемещение щестерни, свободно сидящей на оси и сцепляющейся с двумя рейками — неподвижной и закреплённой на столе.  [c.91]

В механизме с одними поступательными парами относительное движение любых двух звеньев получается прямолинейно-поступательным и отношение между скоростями звеньев постоянным. Таким образом, механизмы первого типа пригодны для преобразования прямолинейно-поступательного движения ведущего звена в прямолинейно-поступательные движения ведомых звеньев с постоянным отношением скоростей и с соблюдением заданных направлений движения звеньев.  [c.465]

Назначение. Плоские и пространственные механизмы с одними поступательными парами пригодны для преобразования прямолинейно-поступательного движения ведущего звена в прямолинейно-поступательные движения ведомых звеньев по заданным направлениям и с постоянным отношением скоростей.  [c.468]

Если ось качания коромысла совпадает с осью поворота храпового колеса или направление движения ведущего ползуна совпадает с направлением движения храповой рейки, то при рабочем ходе собачка не имеет движения относительно колеса или рейки, что создаст благоприятные условия работы механизма. При невозможности выдержать указанное соответствие, например при поступательном движении одного звена и вращательном — другого, необходимо стремиться к возможно меньшим отклонениям действительной траектории движения центра поворота собачки от наивыгоднейшей траектории. Отрицательное влияние поворота собачки относительно зубьев можно отчасти уменьшить увеличением радиуса закругления рабочего конца собачки и дна впадины между зубьями на колесе.  [c.546]

Вращение вала электродвигателя при помощи пары конических шестерен передается валику 1, в котором эксцентрично закреплен палец 2 с посаженным на него роликом 3. Ролик служит для уменьшения трения пальца о ведомую им деталь. Ведущий палец вместе с роликом входит в фигурную прорезь, имеющуюся в ударнике 4. При движении ведущего пальца по описываемой им окружности он заставляет ударник совершать возвратно-поступательное движение. Конфигурация прорези такова, что при рабочем ходе скорость ударника возрастает от нуля до скорости, равной линейной скорости на окружности с радиусом, определенным расстоянием от центра валика I до внешней поверхности ролика 3.  [c.423]

Кинематическая задача заключается в воспроизведении заданных или обусловленных движений или, точнее, в преобразовании движения ведущего звена в заданные или обусловленные движения ведомых звеньев. Так как возможность воспроизведения движений для каждого механизма определяется характером применяемых кинематических пар, то с этой точки зрения плоские механизмы удобно разбить на три следующих типа 1) механизмы с одними поступательными парами 2) механизмы с одними вращательными или с вращательными и поступательными парами 3) механизмы, имеющие высшие пары.  [c.447]

Передачи гибкой связью применяются при больших межосевых расстояниях, а также для преобразования вращательного движения в поступательное и наоборот. Передача состоит из ведущего и ведомого колес (шкивов, барабанов или звездочек) и охватывающей их гибкой связи (ремня, шнура, стальной ленты, проволоки или цепи). В соответствии с типом гибкой связи различают ленточные, плоскоременные, клиноременные, круглоременные и цепные передачи. Наибольшее применение в периферийных устройствах ЭВМ и приборах находят передачи плоскоременные, клиноременные и передачи зубчатым ремнем.  [c.260]


Эти механизмы пригодны для преобразования прямолинейнопоступательного движения ведущего звена в прямолинейно-поступательное движение ведомого звена с постоянным отношением скоростей. Многозвенные механизмы с одними поступательными парами для удобства анализа можно соответствующей разбивкой привести к трехзвенным.  [c.50]

Пример. Требуется составить схему механизма отсчетного устройства, у которого за один оборот валика шкалы точного отсчета ШТО (ведущего звена /) указатель шкалы грубого отсчета ШТО (рабочего звена 1) должен перемещаться на 1 мм в направлении, перпендикулярном к оси валика ШТО. Для преобразования вращательного движения в поступательное используем пару Н винт—гайка с шагом резьбы s= 1 мм, а для вращения винта, перпендикулярного к оси валика ШТО — пару К одинаковых конических колес. Звенья / и 2 свяжем со стойкой 4 вращательными парами А к В, а гайку с указателем — поступательпой парой Е и составим схему механизма, показанную на рис. 1.3, и.  [c.25]

В приборах (например, лентопротягивающих устройствах), транспортных машинах и др. используют механизмы (рис. 19.1, г), преобразующие вращательное движение ведущего звена-катка 1 в поступательное движение ведомого звена J. Прижатие к ведущему звену ведомого может осуществляться силой тяжести последнего или, например, с помощью свободно вращающегося катка 2.  [c.310]

При вращении приводного вала фланец вала через шатуны приводит в возвратно-поступательное движение поршни, которые через торцовой распределитель 1, аналогичный описанному выше, осущест- ляют всасывание и нагнетание рабочей жидкости. Валик 7 с универсальными шарнирами, преодолевая трение в торцовом распределителе, синхронно с движением ведущего вала, вращает блок цилиндров, чем достигается необходимая точность работы распределителя.  [c.79]

Дефектоскоп состоит из приводного механизма сменных измерительных блоков и внешнего записываюш,его устройства. Приводной механизм включает электропривод, ведущую и ста-билизируюш,ую головки. Ведущая головка является преобразователем вращательного движения в поступательное благодаря установке обрезинен-ных роликов под углом 30° к оси трубы. Стабилизирующая головка отличается от ведущей только продольным расположением роликов. Приводной механизм обеспечивает обратное движение при подходе к краю трубы. Блок контроля сплошности диэлектрических покрытий содержит преобразователь напряжения, высоковольтный трансформатор, умножитель напряжения и скользящий контакт в виде кольцевой провшючной оболочки, надетой на корпус блока. Наличие трещин обнаруживается по искровому разряду между скользящим контактом и металлом трубы, записываемому самописцем.  [c.329]

Звено 1 имеет прорезь, скользящую по призматическому камню 3 стойки. Зубчатая рейка а звена 1 входит в зацепление с зубчатым колег сом 2, вращающимся вокруг неподвижной оси В. Звенья 4 и 5 входят во вращательную пару А и вращательные пары С и D с колесом 2 и звеном 1. При возвратно-поступательном движении ведущего звена 1 звенья 4 и 5 совершают сложные движения, а точка А описывает сложную шатунную кривую.  [c.117]

Кривошипно-шатунные механизмы применяются в производственнотехнологических машинах главным образом для преобразования вращательного движения ведущего звена (кривошипа) в возвратно-поступательное движение ведомого звена (ползуна). Однако эти механизмы могут также преобразовывать возвратно-поступательное движение ползуна в непрерывное вращательное движение кривошипа. Кривошипно-шатунные механизмы могут быть внецентренными и центральными. При проектировании внецен-тренных кривошипно-шатунных механизмов считаются известными максимальное значение функции положения ползуна (максимальное перемещение ползуна) Пп,ах = гаах И отношение т времени рабочего хода ко времени  [c.143]

В рабочих 1машинах кривошипно-шатунный механизм используют преимущественно для преобразования равноме рного вращательного движения ведущих распределительных валов в неравномерное поступательное движение ползуна или поршня. Длина хода ползуна равна удвоенному радиусу кривошипа. Если нужно, чтобы ход ползуна был равен 100 мм, радиус кривошипа делают длиной 50 мм.  [c.31]

Стержневые механизмы, звенья которых образуют вращательные или поступательные пары, применяются в рабочих машинах и двигателях грузоподъемных и других машин. При проектировании машины к механизму могут быть предъявлены различные требования, например при вращательном движении ведущего звена ведомое звено должно совершать возвратно-поступательное движение при определенной величине хода. Дополнительно может быть предъявлено условие, чтобы средние скорости при движении ведомого звена вперед и назад былп различны и чтобы некоторые из точек звеньев описывали точно или приближенно заданные траектории или в определенные промежутки времени занимали заданные положения в плоскости. Могут быть заданы и более сложные условия. Удовлетворить поставленные при проектировании машины требования полностью или частично можно выбором типа механизма и расчетом соответствующих размеров его звеньев.  [c.74]

Кулачковые механизмы бывают плоскими и пространственными. Они отличаются друг от друга в идом движения ведущего и ведомого элементов и формой кулачка. Движение элементов бывает вращательным, поступательным и колебательным. Контур кулачков составлен из прямых и круговых дуг, что облегчает их расчет и лроизводство. Соприкосновение между кулачком и свя-  [c.395]

Для машин с несложной кинематической структурой, определяемой тем, что при любом движении ведущего звена соотношение угловых и линейных скоростей ее звеньев остается неизменным и независящим от угла поворота ведущего звена, движение с = onst чрезвычайно просто. Оно будет представлять собой ряд равномерных поступательных и вращательных движений звеньев. Следует это из того, что в машинах указанного типа (с постоянным отношением угловых и линейных скоростей) при равномерном движении ведущего звена все остальные звенья также будут совершать равномерное движение, а поэтому кинетическая энергия, равная сумме кинетических энергий отдельных звеньев, не будет изменяться. Механизмы такого рода машин можно характеризовать как механизмы с постоянными передаточными отношениями. Примером их могут служить разные грузоподъемные машины, тали, полиспасты, транспортеры, элеваторы и т. п. Во всех иных при равномерном движении ведущего звена все остальные звенья, в том числе и груз, движутся равномерно, а вместе с тем и с постоянной кинетической энергией. Итак, для машин, механизмы которых характеризуются постоянством передаточного отношения, движение равновесное есть вместе с тем равномерное, которое и называется в этом случае равномерным установившимся движением.  [c.25]


Стенды, в которых форма создаваемых колебаний обусловлена кинематической схемой механизма, преобразующего вращательное движение ведущего звена в возвратно-поступательное движение вибростола или виброплатформы.  [c.105]

За последние 15 лет кафедрой Машины-автоматы и полуавтоматы были разработаны и изготовлены вибростенды четырех типов (МП-1 МП-2 низкочастотный вибростенд, стенд ВМБА), причем они относятся к той группе механических стендов, в которых форма создаваемых колебаний обусловлена кинематической схемой механизма, преобразующего вращательное движение ведущего звена в возвратно-поступательное движение вибростола. В свою очередь, упомянутые четыре типа вибростендов могут быть подразделены на две группы 1) стенды, основанные на схеме сдвоенного кривошипно-ползунного механизма с длиной шатуна, значительно превышающей длину кривошипа 2) стенды, основанные на схеме такого кривошипно-ползунного механизма, в котором длина шатуна равна длине кривошипа модификацией этой схемы является планетарный механизм, известный также под названием колеса Лагира.  [c.106]

Зубчатой передачей называется механизм, который посредством зубчатого зацепления передает движение от ведущего вала к ведомому, причем угловые скорости этих валов и крутящие моменты на них находятся в определенном соотношении по величине и направлению. Разновидностью зубчатой передачи является также зубчатореечная передача, которая служит для преобразования вращательного движения в поступательное или наоборот.  [c.442]


Смотреть страницы где упоминается термин Движение ведущее поступательное : [c.210]    [c.229]    [c.256]    [c.250]    [c.187]    [c.65]    [c.73]    [c.505]    [c.535]   
Теоретическая механика (1987) -- [ c.35 ]



ПОИСК



Вал ведущий

Движение ведущее

Движение поступательное

Механизмы для преобразования вращательного движения в поступательное с реверсированием ведущего эвена



© 2025 Mash-xxl.info Реклама на сайте