Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура ориентировка

Элементарная ячейка 95, 107 Элементы симметрии 96 — структуры, ориентировка 91  [c.352]

Т, е. структуры с одинаковой ориентировкой всех кристаллов.  [c.548]

Свойства сплавов зависят от образующейся в процессе кристаллизации структуры. Подструктурой понимают наблюдаемое кристаллическое строение сплава. Процесс кристаллизации начинается с образования кристаллических зародышей — центров кристаллизации. Скорость кристаллизации зависит от скорости зарождения центров кристаллизации и скорости роста кристаллов чем больше число образующихся зародышей и скорость их роста, тем быстрее протекает процесс кристаллизации. Структура сплава зависит от формы, ориентировки кристаллических решеток в пространстве и скорости кристаллизации.  [c.6]


При выявлении деталей формы на изображении продолжается построение, структурная основа которого заложена предыдущими этапами. Однако оно должно быть выделено в качестве самостоятельного действия, так как имеет принципиально отличную геометрическую основу. Если в предыдущем действии ориентировка основывалась на структуре базовой формы и, следовательно, исходной системе координат проекционного пространства, то рассматриваемое действие связано только с отдельными элементами целого, а именно с плоскостями — гранями формы. От качества выполнения предыдущей работы во многом зависит результат рассматриваемой, внешняя сторона которой заключается в построении окончательных контурных обводов всех элементов формы. Студенты часто забывают, что за этой стороной скрывается подготовительная работа по геометрическому анализу и многократному уточнению формообразующих контуров- Они стремятся форсировать конечный этап выполнения внешних обводов формы.  [c.113]

Кроме этого, в основе пространственно-графического моделирования заложена идея моделирования процесса формообразования (а не внешнего вида, структуры объекта). Это принципиальное отличие от традиционного технического рисования, оно переводит методику обучения графическим навыкам в план интеллектуальной деятельности. Центральным моментом обучения пространственно-графическому моделированию является формирование ориентировки на использование геометрических и графических навыков в различных задачах технического творчества. Этот момент является чрезвычайно важным для профессиональной деятельности с использованием современных компьютеров.  [c.158]

Как указывалось ранее, кристаллическая решетка металла, подвергнутого холодной обработке давлением, искажается в ней возникают напряжения, повышается количество дефектов решетки изменяется тонкая структура металла — блоки мозаики измельчаются, зерна металла раздробляются, а равноосная форма их (наблюдавшаяся до деформации) теряется. Осколки зерен получают продолговатую форму, вытягиваясь в направлении действия деформации при растяжении и перпендикулярно к направлению при сжатии. Кристаллические решетки зерен приобретают определенную пространственную ориентировку, называемую текстурой деформации. Микроструктуру металла после холодной деформации называют волокнистой.  [c.87]

Каждая взаимная ориентировка и Lj- дает свою энергию взаимодействия, которая и обусловливает расщепление соответствующего энергетического уровня атома, т.е. мультиплет-ную структуру термов атома. Мультиплетность линий излучения порождается мультиплетностью энергетических уровней атома. Мультиплетность уровней атома определяется формулами (44.1а, б).  [c.246]


Стандартная проекция (рис. 63) обычно используется для представления кристаллических структур и ориентировок кристаллов. Такой тип проекции получается при ориентировке на плоскости проекции кристаллической плоскости с малыми индексами. Например, для кубической плоскости центром проекции является нормаль к плоскости куба, т. е. направление [001]. В таких проекциях полностью проявляется симметрия кристалла. Для кубического кристалла (г.ц.к. и о.ц.к.) проекция делится путем пересечения большими кругами на 24 элементарных стереографических треугольника, которые кристаллографически идентичны (рис. 63,6). В каждом конкретном случае три угла треугольников представляют эквивалентные направления <001 >, <011> и <111 >, образуя всегда одни и те же углы друг с другом. На проекции эти треугольники различны по форме вследствие изменения величины угловых и линейных элементов в различных частях проекции.  [c.116]

Во-вторых, осложняющим обстоятельством является наличие границ зерен. Усложнение условий деформации и дислокационной структуры, связанное с границами, рассмотрено в гл. П. Здесь лишь отметим, что приграничные области из-за большей турбулентности скольжения, как правило, характеризуются иными ориентировками, чем внутренние объемы кристаллитов, и большим рассеянием текстуры по сравнению с тем, которая диктуется схемой напряженно-деформированного состояния.  [c.280]

ОБЪЕДИНЕННАЯ ТЕОРИЯ ОРИЕНТИРОВАННЫХ ЗАРОЖДЕНИЙ И РОСТА. Электронномикроскопические исследования дислокационной структуры и кристаллографической ориентировки очень малых объемов (дислокационных ячеек, субзерен, зародышей рекристаллизации, приграничных объемов и т.д.) показали, что действительно ориентировка зародышей рекристаллизации всегда связана определенным образом с ориентировкой тех локальных объемов деформированной матрицы, в которых они образовывались, точнее, практически повторяют эту ориентировку (см. гл. VII). Но скорость роста различных зародышей в текстурованной матрице различна.  [c.407]

Первая компонента текстуры—плоскость формируется в процессе вторичной рекристаллизации. Вторичная рекристаллизация протекает в стали, в которой полностью завершен процесс первичной рекристаллизации, т. е. имеется уже сравнительно равновесная структура. При нагреве такой стали выше 950° С начинается процесс избирательного роста зерен. Наибольшей скоростью роста обладают зерна, у которых с поверхностью листа совпадает плоскость (tlO) (при образовании ребровой текстуры) или плоскость (100) (при образовании кубической текстуры). Такой процесс избирательного роста зерен приводит к образованию в листе трансформаторной стали соответствующей текстуры. Рост зерен с определенной ориентировкой в процессе вторичной рекристаллизации осуществляется под действием поверхностной, гранично-й и объемной энергий. Под поверхностной энергией понимается различие между энергией и энтропией частиц, находящихся на свободной поверхности кристалла (по границе раздела металл-газ), и частиц, расположенных внутри кристалла. Так как по разным плоскостям ретикулярная плотность атомов различна, то поверхностная энергия. может различаться на 30%. Следовательно, зерна, выходящие на поверхность листа трансформаторной стали различными гранями, могут иметь различную поверхностную энергию. Рост зерен, обладающих минимальной поверхностной энергией, является энергетически выгодным процессом. С учетом влияния поверхностной энергии, образование текстуры в листе трансформаторной стали может быть объяснено ростом зерен с минимальной поверхностной энергией.  [c.145]

Под действием пластической деформации происходит изменение структуры металла и его физико-механических свойств. Возникает определенная ориентировка кристаллический решетки металла (текстура). Зерно деформируется, вытягивается в направлении течения металла, сохраняя ту же площадь поперечного сечения.  [c.90]

Сущность предмета заключается в его химическом составе, включая изотопный, и неизменяемости его с течением времени наличии примесей, в том числе незначительных типе структуры величине зерна ориентировке и др.  [c.14]


Из анализа данных, полученных разными авторами [9, 275, 302, 303], изменение размеров ячеек для моно- и поликристаллических ОЦК-металлов зависит от величины энергии дефекта упаковки конкретного материала, условий испытания, размера зерна, ориентировки, схемы нагружения и находится в пределах 3,0 — 0,2 мкм. С повышением температуры деформации размер ячеек увеличивается, их границы становятся более тонкими и плотными, дислокации внутри ячеек почти полностью отсутствуют. Среди особенностей ячеистой структуры отмечается [9, 295], что размер ячеек не зависит от начального размера зерна.  [c.128]

Интересную модель тонкого строения стенок ячеек предложил Кокс [304]. Будучи в целом практически полностью внутренне скомпенсированными по знаку дислокаций, границы ячеек являются поляризованными одна их сторона состоит из положительных дислокаций, другая — из отрицательных. Это обеспечивает большую раз-ориентировку между внутренностью стенки и одной из ячеек, чем между самими ячейками. В некоторых случаях соседние ячейки могут быть не разориентированы, тогда как между ячейкой и внутренностью стенки разориентировка весьма заметна. Такие результаты свидетельствуют о том, что угол разориентировки ячеек не является достаточным параметром для суждения о прочности границ ячеек как барьера на пути скольжения, так как структура стенки может быть различна и в разной степени проницаема для дислокаций. При этом угол разориентировки субструктуры ср определяется уже не общей плотностью дислокаций р, а плотностью избыточных дислокаций [259].  [c.130]

Из рассмотрения реальной геометрии траектории трещины в пространстве, которая отражает многообразие процессов взаимодействия структурных элементов у кончика распространяющейся трещины с пересекающей их зоной пластической деформации, следует, что уменьшать величину Ki на некоторый безразмерный коэффициент, если различия в локальных ориентировках направления роста трещины вдоль ее фронта статистически неизменны в разные моменты времени. В том случае, когда различия ориентировок локальных направлений роста трещины нарастают по ее длине, в качестве множителя следует использовать безразмерную функцию. Корректировка подразумевает уточнение реализуемых затрат энергии на рост трещины в связи с ее более развитой в пространстве геометрией излома, чем в предполагаемом случае формирования идеально плоской поверхности. Определение плотности энергии разрушения (dW/dV)f через уровень одноосного напряжения при растяжении образца при формировании излома с разной высотой скосов от пластической деформации и при различной шероховатости излома в срединных слоях образца также связано с введением поправки на используемую в расчете величину действующего напряжения (см. главу 4). Прежде чем определить структуру указанных поправок, рассмотрим вид управляющих параметров в уравнениях роста усталостных трещин.  [c.235]

При отклонении разориентировки соседних зерен от ориентации, точно соответствующей специальной, особые свойства специальных границ изменяются не резко, а постепенно. Структура таких границ может быть представлена как специальная, но с наложенной сеткой структурных зернограничных дислокаций, компенсирующей отклонение от идеальной ориентировки. В общем случае для описания структуры границ, близких к специальным, требуются три сетки параллельных ЗГД, величина вектора Бюргерса которых обратно пропорционально Согласно геометриче-  [c.88]

Основные и покрывающие диски первого и второго колес и второе колесо в целом были в сохранности. В сохранности остались также заклепки и участки поверхности крепления лопаток с основными и покрывающими дисками. Структура материала разрушенной лопатки в широкой ее части ориентирована по мартенситу, твердость по НВ 241. В узкой части мартенситная ориентировка не  [c.13]

Однако исследование дислокационной структуры и поверхностного рельефа усталостно нагруженных монокристаллов ОЦК металлов в ряде случаев не выявляет PSB. В монокристаллах молибдена при частоте знакопеременного нагружения 36 Гц усталостные трещины, возникающие в приповерхностных слоях, связаны с участками локального разогрева до температур более 500 К [7, 8]. В этих участках были обнаружены PSB и бездислокационные каналы [8]. Последние наблюдаются в кристаллах молибдена ориентировки (100) в приповерхностных слоях площадок 110 на площади, существенно превы-  [c.163]

С помощью высоковольтной микроскопия рассмотрена дислокационная структура, сформированная в монокристаллах молибдена ориентировки (100) после циклического нагружения при постоянной амплитуде напряжения симметричного цикла нагружения с частотой 36 Гц в условиях комнатной температуры.  [c.426]

Предметом особого рассмотрения в учебных работах по пространственно-графическому моделированию является синтактический анализ изображения без какой-либо связи с натурной моделью или конкретным функционально-конструктивным содержанием. Дидактическая цель данного этапа обучения в согласии с принципом системного подхода заключается в предварительном изучении языка пространственнографического моделирования. Студентам дается ориентировка в законах образования формальных графических структур, средствах выражения и возможностях в достижении различных целей. Оказалось, что такая ориентация в вопросах син-тактики формообразования, определяющих возможности графического моделирования, совершенно необходима для творческого овладения рассматриваемым предметом.  [c.53]

Если развитие творческих навыков начинать на старших курсах (как это в основном имеет место на сегодняшний день), то подобная ориентировка превращается в устоявшийся стереотип деятельности, преодоление которого становится самостоятельной задачей, отвлекающей много времени и сил как преподавателей, так и студентов. Если же подобная установка не будет устранена и на старших курсах, то молодой специалист выйдет в жизнь с искаженной ориентацией на нормы качества профессиональной деятельности. Творческая пассивность явится прямым следствием принятой в вузе постановки учебной деятельности. Поэтому в предлагаемой работе отстаивается мысль, что творчеству нельзя обучать изолированно, как и ельзя вводить творческие задачи (в противовес нетворческим, программным) на опре деленном этапе обучения в вузе. Необходимо перестроить обычный учебный процесс так, чтобы с первых дней студент включался в организационную структуру деятельности, которая бы способствовала развитию требуемых качеств личности.  [c.182]


Чем больше степень деформации, тем большая часть кристаллических зерен получает преимущественную ориентировку (текстуру). Характер текстуры зависит от природы металла и вида деформации (ирокатка, волочение и т. д.) Кристаллографическую текстуру не следует отождествлять с волокнистой структурой, волокнистость иногда может и не сопровождаться текстурой. Образование текстуры способствует появлению анизотропии механических и физических свойств.  [c.48]

Чрезмерное повышение температуры нагрева вьнпе точки Лс , вызывает рост зерна аустеннта, что ухудытет свойства стали. Пели исходи и1 структура кристаллографически упорядочена (мартенсит, пндмапи1теттова структура, бейннт), при нагреве несколько выше /It , размер, форма и кристаллографическая ориентировка но-  [c.194]

В результате рекристаллизации образуются новые зерна аустенита, не связанные по ориентации с исходной структурой. Если после такого высокого нагрева зерно получается все же увеличенных раз.меров, то проводят еще нормальный отжиг для получения мелкого зерна. Такое наследование размера, формы и ориентировки ау-стеинтного зерна называют структурной наследственностью. Это яв 1еипе подробно исследовано В, Д. Садовским Время нагрева  [c.194]

Для характеристики ориентировки кристалла в случае одноосного нагружения используется только один треугольник. Обычно берется треугольник с вершинами [001], [011], [111], расположенный в центре проекции. Все возможные ориентации кристаллов кубической структуры обозначаются точкой (например, оси растяжения) внутри такого треугольника или вдоль его границ. Поэтому на практике, если хотят представить ориентацию монокристаллическо-го образца, то измеряют углы между осью образца и, по крайней мере, двумя из трех направлений [001], [011], [111]. Затем положение этих осей откладывают на стандартном треугольнике, используя стереографическую сетку.  [c.116]

Величина сдвига s и величина сдвиговой деформации в плоскости сдвига 5 — важные критерии двойникового превращения. В процессе двойникового превращения изменяется ориентировка двойниковой прослойки, однако не изменяется симметрия или структура кристалла. Поэтому угол ф между первой К и второй К2 неискаженными плоскостями остается неизменным до и после превращения, а величина сдвига s будет пропорциональна расстоянию от плоскости зеркального отражения. В частности, для о. ц. к. кристалла (см. рис. 77, а) s= (паКз)/6, где п — О, 1, 3... — номер рассматриваемой плоскости (112), отсчитываемый от плоскости зеркального отражения п= О [на рис. 77, а показаны лишь атомы каждой второй такой плоскости ряды атомов А, С, Е, А м т. д., а ряды атомов В, D, F, В, не лежащие в плоскости чертежа (см. также рис. 42), не обозначены].  [c.134]

Условием его образования является наличие до отжига четкой текстуры деформации. По-видимому, это должна быть к тому же монотекстура, однако этот вопрос не изучен. В условиях такой текстуры некоторые из зародышей рекристаллизации, имеющие ориентировку, отличную от ориентировки матрицы и благоприятную для роста за счет текстурованной матрицы (см. гл. X), будут расти значительно интенсивнее, чем иначе ориентированные зародыши, что и приведет к образованию крупнозернистой структуры.  [c.358]

Установлено, что условием образования при первичной рекристаллизации зерен 110 <001 > является наличие компоненты 111 <112> в текстуре деформации. Кристаллиты 111 <112> содержат, по крайней мере, пять типов микрозон, отличающихся дислокационной структурой, характером локальных разориентировок и как следствие условиями протекания в них первичной рекристаллизации. Это полосы деформации, имеющие ориентировку 111 <112>, переходные полосы, двойники деформации, приграничные области и области вокруг включений. Местами предпочтительного образования центров ребровой ориентировки являются переходные полосы, когерентно соединяющие соседние полосы деформации. Переходные полосы имеют небольшую ширину и характерны наличием закономерных разориентировок образующих их субзерен, обеспечивающих кристаллоструктурную связь соседних полос деформации,  [c.416]

При изучении механизмов пластической деформации методом исследования изменения дислокационной структур )1 был выявлен процесс текстурирования монокристаллов кремния и ниобия. Методом прямого наблюдения дислокационной структуры было (юказано, что при скольжении индентора в поверхностных слоях стали XI8H9T достигается в1>1сокая плотность дислокаций с образованием полос скольжения в виде пакетов. При этом отчетливо наблюдается ориентировка пакетов в направлении, перпендикулярном действию тангенциальных сил [29].  [c.45]

Резковыраженная анизотропия критических напряжений сдвига и двойникования в титане, различная ориентировка кристаллов по отношению к действующей нагрузке предопределяют возможность появления значительной микронеоднородности деформации поликристаллического металла. От неоднородности деформированного состояния по микрообъемам деформируемого металла и, как следствие, неоднородности напряженного состояния в отдельных элементах структуры в значительной степени зависят характеристики пластичности и склонность к хрупкости [14, 15]. Особенно подробно эти вопросы изучены исследователями под руководством А. В. Гурьева [ 16—20].  [c.20]

На рис. 10 приведена микроструктура сплава ПТ-ЗВ и распределение в нем микронеоднородной деформации при различной степени деформации. Видно, что уже на пределе упругости (едр = 0,36 %) наблюдается резкая локализация деформации по микрообластям. Это указывает на то, что неоднородность деформированного состояния —не случайный процесс, складывающийся только в ходе последующего. пластического деформирования он целиком предопределяется еще в упругой области и отражает реальное строение сплава, кристаллографические ориентировки отдельных кристаллов и их дислокационную структуру. Формирова-  [c.21]

В металлических материалах по структурному признаку различают Гомогенную и гетерогенную анизотропию [86, 87]. Гомогенная анизо-тррпия определяется типом кристаллической решетки и соответственно различием свойств кристаллов в разных направлениях. При появлении в результате деформации предпочтительной ориентировки кристаллов в поликристаллическом металле свойственное монокристаллам различие свойств проявляется во всем объеме текстурированного металла. Гетерогенная анизотропия связана с закономерно ориентированным распределением в структуре металлических и неметаллических включений, участков, отл1 чающихся по химическому или фазовому составу, а также дефектов, образовавшихся вследствие течения металла при деформации. Основное отличие титановых сплавов от других конструкционных металлов связано с гомогенной анизотропией, влияние которой на характеристики разрушения рассмотрено ниже.  [c.128]

На поверхности стальных шлифов при нагреве на воздухе образуются тонкие окисные слои, которые растут в зависимости от температуры и продолжительности травления. Наблюдаемые при этом цвета побежалости являются результатом интерференции. При микроскопическом наблюдении обнаруживают, что поверхность шлифа окрашивается на отдельных зернах одной и той же фазы в зависимости от ориентировки зерен относительно поверхности шлифа образуются слои разной толш,ины. Толщина окисных слоев также неодинакова на разных фазах в стали цементите и феррите. Это явление используют для получения цветных изображений структуры.  [c.96]

Кратко суммируя эти достижения, можно отметить, что в основе современных описаний структуры таких границ зерен лежит концепция решетки мест совпадения [155, 156], в соответствии с которой в двух произвольно ориентированных кристаллах может быть выбрана сверхрешетка таким образом, чтобы атомы обоих кристаллов находились в ее узлах. Характерным дискретным углам поворота соответствует определенная плотность узлов совпадения, т. е. их доля по отношению ко всем атомам решетки кристалла. Для характеристики решетки совпадения обычно используют не плотность узлов совпадения, а обратную ей величину Е — число атомов решетки кристалла, приходящихся на один узел совпадения в общей сверхрешетке. При некоторых разори-ентировках соседних зерен совпадающие узлы встречаются сравнительно часто и для них значения II относительно малы. Такие разориентировки называют специальными. В качестве критерия близости к специальным ориентировкам часто применяют значе-  [c.87]


Влияние ряда структурных факторов и параметров разрушения (скорости, степени локальной пластичности, направления развития треш,ины) на макрошероховатость освещено в работе 110]. Образование неровностей на поверхностях разрушения является, как правило, следствием образования излома путем слияния многих трещин в единую и распространения трещины по определенным образом меняющейся траектории, определяемой направлением действующих напряжений, кристаллографической ориентировкой элементов структуры, текстурой материала и т. д.  [c.16]

Отсюда следует, что две материальные системы совершенно различной материальной структуры с точки зрения аналитнческогв представления движения динамически эквивалентны, т. е. при подходящих силах имеют одни и те же уравнения движения, если только при надлежащем выборе лагранжевых координат они допускают одно и то же выражение для живой силы. Очень простор пример такой динамической эквивалентности материальных систем, физически различных между собой, мы будем иметь (как это будет видно в п. 49), рассматривая, с одной стороны, одну свободную материальную точку в пространстве (отнесенную к декартовым координатам), а с другой стороны, материальный диск, свободно дви-мсущиНся II своей плоскости (если за его лагранжевы координаты примем декартовы координаты какой-нибудь неизменно связанной с ним точки, а третий параметр выберем пропорциональным углу, определяющему его ориентировку в плоскости относительно непо движных осей).  [c.294]

Спящий волчок 402 Статическое решение, критерий неустойчивости 388, 389. --необходимое условие устойчивости 385, 388 Стереокипетическая система ориентировки тела с гироскопической структурой 243 Стокс 404  [c.431]

Исследовали монокристалл никеля ориентировки [149] (единичное скольжение) в форме образца с прямоугольным поперечным сечением 5 X 10 м.м и длиной рабочей части 10 мм. Кристалл содержал некоторые границы еубзерен. Испытания на усталость проводили в условиях симметричного растяжения — сжатия с постоянной амплитудой пластической деформации при комнатной температуре и частоте около 0,1 Гц. Для наблюдения дислокационной структуры использован 150-киловольтный ТЭМ. Фольги ориентировки (121) были приготовлены из внутренних слоев образца (см. рис. 4). Поверхностная структура наблюдалась с помощью оптической микроскопии или растровой электронной микроскопии (РЭМ).  [c.159]

С целью установления особенностей микромеханизма усталостной трещины после различных режимов термообработки выполнен фрактографический анализ поверхности изломов, который показал, что характер изломов и механизм развития усталостной трещины во всех случаях в основных чертах сходны с описанными в литературе [12, 13]. Трещина зарождается практически одновременно по всей внутренней окружности надреза из множества центров, которые, сливаясь, образуют сплошной концентрический фронт. Вначале она развивается в близко расположенных параллельных плоскостях, постепенно соединяемых поперечной деформацией, благодаря чему на поверхности образуются гребни, идущие в радиальном направлении (рис 3, а) В дальнейшем гребни постепенно исчезают, хотя хаотическая общая неровность разрушения постепенно возрастает. По-видимому, возникновение этих неровностей отражает развитие трещины в неоднородной структуре. С увеличением напряженности в вершине трещины в возрастающей стапени появляются усталостные бороздки довольно регулярного характера. Эти бороздки не всегда перпендикулярны к макронаправлению усталостной трещины и меняют направление, очевидно, в соответствии с ориентировкой зерен (рис. 3, б). Шаг между бороздками в каждом зерне неодинаков и только среднее его значение примерно совпадает с продвижением трещины за цикл, подсчитанным по скорости усталостной трещины, определенной по ширине макрокольца, образованного при ступенчатом нагружении.  [c.182]


Смотреть страницы где упоминается термин Структура ориентировка : [c.461]    [c.47]    [c.138]    [c.25]    [c.52]    [c.165]    [c.61]    [c.88]    [c.580]    [c.96]    [c.162]   
Физическое металловедение Вып II (1968) -- [ c.410 , c.411 ]



ПОИСК



Возможные ориентировки аустенита при а - у превращении в структуре двойникованного мартенсита

Ориентировка,

Стереокинетическая система ориентировки тела с гироскопической структурой

Элементы структуры, ориентировка



© 2025 Mash-xxl.info Реклама на сайте