Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свободная энергия ядра

Свободная энергия ядра 157 Составное ядро 146  [c.416]

МЕТОД ЯМОК ТРАВЛЕНИЯ. Этот метод основан на том. что при воздействии специально подобранного травителя на полированную поверхность шлифа в местах выхода дислокаций на эту поверхность появляются ямки травления. Их появление в. местах выхода дислокаций обусловлено тем, что в ядре дислокации свободная энергия повышена и растворение идет быстрее, чем вдали от дислокации. Ядро дислокации действует как центр растворения. Под микроскопом ямка травления становится видна тогда, когда  [c.101]


Что касается энергии падающей частицы, то она не должна быть слишком большой, так как в области больших энергий ядро становится прозрачным для частиц. Понятием составного ядра можно пользоваться, если длина свободного пробега падающей частицы в ядерном веществе мала по сравнению с размерами ядра.  [c.150]

Введём в рассмотрение температуру ядра Т (мы будем измерять её в энергетических единицах), а также термодинамические функции ядра энтропию S, энергию возбуждения U и свободную энергию Р.  [c.157]

Рис. 8.4. Зависимость свободной энергии от радиуса растущей сферической области образующейся фазы. Зародыш неустойчив, если его радиус меньше критического радиуса Гс. При превышении Га зародыш становится ядром, которое может самопроизвольно расти, уменьшая ЛС системы. Д — барьер свободной энергии для зародышеобразования. Рис. 8.4. Зависимость <a href="/info/1723">свободной энергии</a> от радиуса растущей сферической области образующейся фазы. Зародыш неустойчив, если его радиус меньше критического радиуса Гс. При превышении Га зародыш становится ядром, которое может самопроизвольно расти, уменьшая ЛС системы. Д — барьер <a href="/info/1723">свободной энергии</a> для зародышеобразования.
Распад свободного протона невозможен энергетически, так как его масса меньше массы нейтрона. Внутри же ядра такой процесс может идти за счет энергии ядра  [c.111]

Не исключено даже, что если такие ядра вначале отсутствуют, то они спонтанно образуются в соответствии со статистическими законами. При напряжении —Р свободная энергия, требуемая для образования ядер, должна быть равна  [c.404]

Это хорошо согласуется с более сильной блокировкой дислокации конденсированной атмосферой по сравнению с разбавленной. Таким образом, при распределении Ферми — Дирака число примесных атомов в атмосфере должно увеличиваться с удалением от центра дислокации. Интересным в связи с этим является вопрос о степени вероятности нахождения примесного атома непосредственно в ядре дислокации. Как было показано [И, с. 298], с учетом отрицательного изменения при деформационном старении энтропии (во всяком случае для твердых растворов замещения) вероятность нахождения примесных атомов в ядре меньше, чем вне его —в атмосфере. Это связано с тем, что при размещении атома в ядре дислокации происходит настолько заметное уменьшение энтропии системы, что делает подобное размещение термодинамически маловероятным. Со снижением температуры и уменьшением вклада энтропии в изменение свободной энергии становится возможным нахождение примесных атомов как в ядре, так и в атмосфере. Однако в первом случае концентрация их меньше, что дает два значения расстояний между точками закрепления дислокаций — больше для ядра и меньше для атмосферы. Этот весьма интересный вопрос с точки зрения теории и практики деформационного старения требует дальнейших исследований.  [c.34]


Особенно интересен самый начальный этап возникновения зародыша микротрещины, который может быть представлен как слияние нескольких дислокаций и образование полого ядра [112, 113, 119]. Действительно, уже при небольших скалывающих напряжениях 10 дн см дислокационные скопления в отдельных плоскостях скольжения могут достигать величины п 10 —10 . При этом оказывается, что расстояние между двумя ведущими дислокациями Xi 0,42 )1пх сокращается до нескольких Ъ, становясь меньше ширины дислокации [214], а силам отталкивания между ними, определяемым соотношением F = С6 /2я(1 — [x)xi [201], должны отвечать напряжения, достигающие так называемого теоретического значения критического скалывающего напряжения в идеальном кристалле, оцениваемого как С/2я — G/30 [215, 216]. Это означает, что в непосредственной близости от головы скопления выводы линейной теории утрачивают справедливость. Головным дислокациям оказывается выгодным слиться и образовать полое дислокационное ядро, как это изображено схематически на рис. 91. Преодолеваемый потенциальный барьер тем более мал, что начальное полое ядро еще не имеет развитой поверхности, т. е. значение избыточной свободной энергии а еще  [c.176]

Металлы — кристаллические вещества, характеризующиеся при данных условиях строго определенным пространственным расположением атомов. Такое расположение атомов у каждого металла обусловлено их энергетическим состоянием (взаимодействие электронов с ядром) и соответственно минимумом свободной энергии Р системы атомов. Таким образом, металл в твердом состоянии при данной температуре имеет определенное, энергетически наиболее устойчивое кристаллическое (атомное) строение с минимумом свободной энергии Р.  [c.26]

И все же эти соображения ошибочны. Тому есть две причины. Во-первых, не точна оценка свободной энергии, так как большая часть энергии дислокации связана с атомным беспорядком в ее ядре. Структура этого ядра не зависит от относительного расстояния между дислокациями. Следовательно, нет никаких физических оснований для кооперативной катастрофы . Во-вторых, есть и более фундаментальное замечание. Дело в том, что само понятие дислокации —- нарушенного расположения — предполагает наличие некоторого правильного расположения атомов, нарушенного тем или иным способом. Топологическая характеристика данной дислокации имеет однозначный смысл, лишь если остается еще достаточно большой объем, занятый локально идеальной решеткой, по отношению к которой можно определить наличие разрыва непрерывности. Если же допустить, что почти каждый атом попадает в ядро дислокации, то нельзя определить, где же эта дислокация на самом деле находится. Описание топологического беспорядка на языке математической теории дислокаций имеет смысл, только если дислокации расположены достаточно далеко друг от друга, так что каждую из них можно однозначно идентифицировать. В противном случае локальный беспорядок, возникающий повсюду из-за взаимодействия ядер дислокаций, в принципе невозможно отличить от случайной плотной упаковки. Последняя лучше всего описывается на простом атомном языке (рис. 2.17).  [c.73]

Образование зародышей может быть гомогенным и гетерогенным. При гомогенном образовании зародыши возникают за счет спонтанных флуктуаций атомных конфигураций. Образование небольшого участка новой более стабильной фазы сопровождается понижением объемной свободной энергии (поскольку предполагается, что новая фаза более устойчива), Необходимо также принимать во внимание свободную поверхностную энергию ядра п энергию упругих деформаций, связанную с напряжениями в решетке, возникающими вблизи ядра. Обе эти энергии связаны с процессами, препятствующими происходящему изменению свободной энергии. Суммарное же ее изменение можно представить так  [c.148]

Рис. 70. Зависимость свободной энергии от размера ядра. Рис. 70. Зависимость <a href="/info/1723">свободной энергии</a> от размера ядра.
Из этого равенства следует, что масса струи увеличивается во столько раз, во сколько раз уменьшается средняя квадратичная скорость. Так как вдоль свободной затопленной струн средняя скорость непрерывно снижается, масса струи непрерывно возрастает (ядро постоянной массы соединяется с присоединенной массой), а кинетическая энергия уменьшается.  [c.49]


Возникновение электронной или дырочной электропроводности при введении в идеальный кристалл различных примесей обусловлено следующим. Рассмотрим кристалл 81, в котором один из атомов замещен атомом 8Ь. На внешней электронной оболочке 8Ь располагает пятью электронами (V группа периодической системы). При этом четыре электрона образуют парные электронные связи с четырьмя ближайшими атомами 81. Свободный пятый электрон продолжает двигаться вокруг атома 8Ь по орбите, подобной орбите электрона в атоме На однако сила его электрического притяжения к ядру уменьшится соответственно величине диэлектрической проницаемости 81. Поэтому для освобождения пятого электрона требуется незначительная энергия (приблизительно 0,008 адж). Такой слабо связанный электрон легко отрывается от атома 8Ь под действием тепловых колебаний решетки при низких температурах. Низкая энергия ионизации примесного атома означает, что при температурах около—100° С все атомы примесей в Се и 81 уже ионизированы, а освободившиеся электроны участвуют в процессе электропроводности. При этом основными носителями заряда являются электроны и возникает электронная (отрицательная) электропроводность, или электропроводность п -типа.  [c.388]

При этом в одном и том же состоянии (на одном энергетическом уровне) может находиться не более двух протонов, различающихся лишь направлением спина. Это же относится и к нейтронам. Протоны и нейтроны в ядре обладают своим собственным набором воз-можны.ч состояний. Такая система микрочастиц, подчиняющаяся принципу Паули и полностью заполняющая все низшие энергетические уровни, называется вырожденным ферми-газом. В вырожденном ферми-газе, несмотря на сильное ядерное взаимодействие между нуклонами, столкновения нуклонов запрещены, и они ведут себя так, как если бы взаимодействие между ними было слабым. В самом деле, нуклон I мог бы испытать столкновение с некоторым нуклоном 2 и передать последнему часть своей энергии и импульса. При этом нуклон 2 перешел бы на более высокий свободный энергетический уровень, а нуклон У в соответствии с законом сохранении энергии должен был бы перейти на более низкий энергетический уровень (рис. 55). Однако все нижележащие уровни согласно принципу Паули имеют ограниченное число мест, и все они заняты, поэтому нуклон 1 не может перейти на занятые нижние уровни. Это означает, что соударения нуклона / с нуклоном 2 не произойдет, говорят, что оно запрещено принципом Паули. Таким образом, частицы вырожденного ферми-газа будут очень редко испытывать столкновения между собой, т. е. вырожденный ферми-газ в этом отношении напоминает разреженный газ с редким столкновением частиц. Эти соображения и дают основание для аналогии ядра с вырожденным ферми-газом.  [c.179]

Глубина потенциальной ямы ядра составляет примерно 20 Мэе, энергия связи слабо связанного нуклона равняется 8 Мэе. Таким образом, потенциальная яма ядра заполнена примерно наполовину занятыми уровнями. Число свободных уровней очень велико, и верхние энергетические уровни распределены чрезвычайно густо. Энергетические уровни в этом случае нельзя приписать какому-либо отдельному нуклону, а они принадлежат ядру как целому. Распределение энергетических уровней ядра Н. Бор иллюстрирует рисунком 86.  [c.280]

Нейтроны входят в состав ядра. Нейтрон в свободном состоянии, в отличие от протона, является нестабильны.м и распадается на протон и электрон с периодом полураспада Т ж 1,01 10 сек (р-распад нейтрона). Внутри ядра нейтрон может существовать неопределенно долго. В 1931 —1933 гг. В. Паули, анализируя закономерности р-распада (см. 41), предположил, что при этом распаде, кроме протона и электрона, испускается еще одна нейтральная частица с массой покоя, равной нулю. Эту частицу назвали нейтрино (v). Нейтрино уносит с собой недостающую энергию, недостающий импульс и недостающий вращательный момент (спин нейтрино s = /j). Вследствие малого эффективного сечения захвата нейтрино нуклонами (о 10 см —  [c.339]

В ЭТОМ случае (3+-распад ядра еС" сводится как бы к превращению одного протона в нейтрон (см. рис. 46, б). Разумеется, это превращение надо понимать условно, так как масса протона меньше массы нейтрона, вследствие чего позитронный распад свободного протона невозможен. Однако для протона, связанного в ядре, подобное превращение возможно, так как недостающая энергия восполняется ядром.  [c.139]

Величина с — это радиус ядра дислокации, имеющий порядок Ь. Желая вычислить энергию более точно, мы должны были бы прибавить ск1да энергию ядра, которая уже не может быть найдена методами теории упругости, для ее подсчета необходимо прибегать к атомным моделям. Величина R представляет собою размер тела, для тела бесконечных размеров и энергия дислокации становится бесконечно большой. В связи с этим можно сделать следующее замечание. При построении дислокации мы исходили из неограниченной среды, в предположении бесконечных размеров тела были вычислены напряжения. В теле конечных размеров, вообще говоря, возникает дополнительная система напряжений, которая находится из условия равенства нулю сил, действующих на свободную поверхность. Для винтовой дислокации как раз дело обстоит просто, поверхность кругового цилиндра,  [c.464]

Природа М. э. При испускании или поглощении у-кванта свободное неподвижное ядро приобретает импульс р = 1 /с, где — энергия у-кванта, и энергию поступат. движения R = pv2M, где М — масса ядра. В результате энергия испускаемых у-квантов оказывается меньше энергии ядерного перехода на величину Л резонансно поглощаются у-кванты с энергией, большей на ту же величину. Т. о., линии испускания и поглощения смещены друг относительно друга на 2Л. В газах за счёт теплового движения и Доплера аффекта происходит уширение у-линий на величину Д = 2у Лк7 и их небольшое перекрытие (рис. 1,д). Для  [c.101]

Возникновению коллоидных частичек предшествует образование твердой фазы (ядра), адсорбируюпхей из растворов по-тенциалобразующие ионы. Сильнее адсорбируются ионы, которые больше понижают свободную энергию поверхности твердой фазы. В результате поглощения ионов поверхность ядра  [c.60]


При сближении атомов Зз-электроны возбуждаются, дискретный уровень расширяется в энергетическую полосу, сохраняющую признаки Зз-состояния не только по энергиям, но и по симметрии. Иными словами, возбуждение Зз-электронов происходит путем увеличения радиуса и толщины шарового слоя, отвечающего Зэ-орбитали. В результате расширения внешних а-орбиталей они перекрываются по кратчайшим расстояниям между ядрами. Перекрытие или сгущение s-состояний в области касания атомов отвечает металлической связи вследствие стягивания положительно заряженных ядер концентрирующимися между ними электронами. Через области перекрытия электроны могут переходить от атома к атому, следовательно, они являются общими для всех атомов металла, т. е. коллективизированными электронами. Максимальная плотность s-электроно возникает в областях перекрытия между ядрами, куда притяжение к ядрам стягивает электроны из периферийных областей s-орбиталей. Минимальная плотность s-состояний отвечает областям, наиболее удаленным от ядер в решетке," а именно центрам октаэдрических и тетраэдрических междоузлий. Электроны, находящиеся здесь, наиболее свободны и осуществдяют металлическую проводимость. Этим состояниям электронов отвечает верх s-полосы. Электроны, находящиеся в области перекрытия , и участвующие в образовании металлических связей, наиболее сильно взаимодействуют с ядрами, имеют малую подвижность и им соответствует дно s-полосы. Поскольку минимуму свободной энергии системы отвечает максимальное число связей на один атом, то оптимальному взаимодействию сферически симметричных s-орбиталей отвечает плотнейшая упаковка с 12 соседями у каждого атома.  [c.24]

Рассмотрим теперь механизм мартенситного превращения в аспекте электронного строения. Свободный атом железа имеет внешнюю электронную конфигурацию 3d 4s (рис. 31, а) с четырьмя неспаренными электронами, создаюш.ими магнитный момент на атоме. При сближении атомов железа происходит возбуждение и перекрытие самых внешних 45-орбиталей, имеющих форму сферических s-оболочек. Возникающие по кратчайшим направлениям между ядрами соседних атомов перекрытия, где концентрируются 45-электроны, представляют сильные металлические связи, образующиеся с выделением энергии. Из принципа минимума свободной энергии число металлических связей каждого атома с соседями в конденсированной системе должно быть максимальным и, следовательно, при отсутствии связей другого типа должна быть устойчива плотная ГЦК упаковка у-железа (К = 12). В ней остовная оболочка 3(Р образована тремя парами электронов с антипараллельными спинами пары электронов связаны внутри своего атома (рис. 31, б) и не способны поэтому образовывать связи с соседними атомами. Отсутствие неспаренных d-электронов в ГЦК -фазе подтверждается ее парамагнетизмом [581.  [c.70]

Величина критического радиуса, при превышении которого зародыш может сймопроизвольно расти и стать ядром роста новой фазы, определяется из условия компенсации бесконечно малого приращения свободной энергии за счет изменения объема изменением поверхностной энергии (рйс. 8.4)  [c.243]

Поскольку Д, л ос1/Д р , скорость этого процесса тем выще , чем дальше отстоят рассматриваемые Р-Г-условия от кривой равновесия Клапейрона. Увеличение ядра на йг шзывает уменьшение свободной энергии систем л на величину  [c.244]

При статистическом описании равновесной зернограничной сегрегации может быть использован подход, развитый для статистического описания адсорбции на свободной поверхности твердого тела. При этом необходим обоснованный выбор вида изотермы адсорбции и способа расчета теплоты и свободной энергии адсорбции, т.е. движущей силы процесса сегрегации. В настоящее время эта задача не только не решена, что объясняется отсутствием необходимых сведений об электронном спектре в ядре структурных дефектов, образующих границу, и недостатком критериев для достаточно корректного выбора приемлемой модели большеугловых границ зерен, но далека даже от корректной постановки в связи с трудностями получения экспериментальных данных об изменении состава и поверхностной энергии границ зерен.  [c.79]

В рамках использованного нами локально-конфигурационного приближения при подсчете учитывается взаимодействие только ближайших соседей, поэтому значение в формулах (35) и (36) отвечает, очевидно, концентрации примесных атомов, адсорбированных в "ядре" большеугловой границы зерна с размером ядра около двух параметров решетки 2 (со — объем атома). В связи с этим и величины СЕ, л Р в формулах (37) — (42) также соответствуют предельной адсорбции в ядре, свободной энергии связи Р примеси с ядром большеугловой границы и концентрации в нем центров адсорбции а.  [c.115]

При взаимодействии у-лучей с атомными ядрами может наблюдаться процесс резонансного возбуждения ядер, если энергия падающих квантов с высокой точностью соответствует энергии одного из возбужденных состояний ядра. Последующий раснад возбужденного состояния сопровождается испусканием у-квантов, энергия к-рых (с точностью до ширины возбужденного уровня) равна энергии поглощенных квантов. Такое явление и наз. Р. р. г.-л. Оно в нринцине аналогично резонансному рассеянию света атомами, однако в случае У Лучей наблюдение резонансного рассеяния существенно осложнено эффектами отдачи. При испускании у-кванта с энергией Е свободное покоящееся ядро вследствие отдачи приобретает кинетич. энергию, равную В = Е 1 1Мс , где М — масса ядра, с — скорость света т. о., энергия испущенного кванта оказывается на величину В меньше энергии соответствующего ядерного возбужденного состояния. Аналогично отдачу испытывает и поглощающее ядро. Вследствие этого линии испускания и поглощения оказываются сдвинутыми друг относительно друга на величину 1В. Этот сдвиг существенно превосходит естеств. ширины у-линий поэтому условие резонанса не реализуется даже в том случае, если в качестве источника и поглотителя у-квантов используются тождественные ядра (исключение — случай весьма мягких у-переходов, когда резонансное поглощение у-лучей может осуществляться благодаря Мёссбауэра аффекту).  [c.399]

Об экранирующехМ влиянии силовых полей промежуточных оболочек можно судить по их электронному строению, определяемому энергетическим состоянием атомов промежуточных электронных уровней. Энергия электронных групп на различных электронных уровнях определяется главным квантовым числом (энергетический уровень электронной оболочки в дальнейшем будем называть группой), изменяющимся от 1 до 6. С увеличением этого числа свободная энергия возрастает. Подгруппы (энергетические подуровни) обозначают буквами з, р, <1, /. От подгруппы 5 к подгруппе / свободная энергия возрастает. Учитывая число электронов в каждой подгруппе, по данным табл. 1.1 можно судить об экранирующем влиянии промежуточных электронных уровней на прочность связи внешних электронов с ядром.  [c.6]

Очевидно, что любое движение рассеивающих ядер будет влиять на кинематику столкновения с нейтроном. В любом материале при температуре Т свободный атом (или молекула) имеет среднюю кинетическую (тепловую) энергию (3/2) кТ, где к — постоянная Больцмана, равная 8,617 X X 10 эвГК- Таким образом, если нейтрон имеет энергию, сравнимую с кТ, т. е. около 0,025 эв при комнатной температуре, то на кинематику его столкновения с ядром будет сильно влиять тепловая энергия ядра.  [c.250]

Если свободное возбужденное ядро переходит в основное состояние, излучая фотон, то энергия фотона меньше энергии возбуждения из-за того, что ядро испытывает отдачу. Однако, если возбужденное ядро находится в кристалле, существует конечная вероятность того, что оно излучит фотон с энергией, в точности равной энергии возбуждения. Иными словами, существует отличная от нуля вероятность того, что состояние кристалла после излучения в точности совпадает с начальным состоянием. Аналогично существует конечная вероятность того, что состояние кристалла не изменится в результате поглощения фотона. Это явление носит название эффекта Мёссбауэра его  [c.31]


РЕЗОНАНСНОЕ, ПОГЛОЩЕНИЕ ГАММА-ИЗЛУЧЕНИЯ, избирательное поглощение у-квантов атомными ядрами, обусловленное квантовыми переходами ядер в возбуждённое состояние. При облучении в-ва у-квантами наряду с обычными процессами вз-ствия с в-вом (см. г амма-излучение) возможно р. п. г.-и., когда у-квант исчезает, а ядро возбуждается. Для Р. п. г.-и. необходимо, чтобы энергия 7-кванта равнялась разности внутр. энергий ядра в возбуждённом и основном состояниях. Это условие как будто бы должно автоматически удовлетворяться, если излучающее и поглощающее ядра одинаковы. Однако квант с энергией 8(со — частота излучения) обладает импульсом р = 1ьа>1с. В соответствии с законом сохранения импульса, при излучении или поглощении у-кванта ядром последнее воспринимает этот импульс — испытывает отдачу. Свободное покоящееся ядро массы М, получив импульс, приобретает кинетическую энергию Аё=р 12М=Р(иЧ2Мс . Такая же энергия Аё отбирается у ядра при испускании. При этом линии испускания и поглощения оказываются смещёнными друг относительно друга на величину 2Д % значительно превосходящую ширину линии у-излучения. В результате Р. п. г.-и. не наблюдается. Для наблюдения Р. п. г.-и. искусственно увеличивают перекрытие линий испускания и поглощения. Для этого используют сдвиг линий за счёт Доплера эффекта при встречном движении излучающего и поглощающего ядер. Необходимая скорость (сотни м/с) сообщается либо перемещением источника или поглотителя, либо за счёт отдачи, испытываемой ядром при а- или Р-распадах, предшествующих излучению у-кванта, либо нагревани-  [c.630]

Последний коэффициент для свободной струи может быть определен как разность коэффициентов кинетических энергий в начальном сечении струи и ядра в постояной массы струи в сечении перед решеткой, приведенных к скорости т)р, т. е.  [c.109]

Бета-распад. Явление электронного бета-распада представляет собой самсдроизвольное прев-рагцение атомного ядра путем испускания электрона. В основе этого явления лежит способность протонов и нейтронов к взаимным превращениям. Масса свободного нейтрона больше массы свободных протона и электрона, вместе взятых, — следовательно, запас полной энергии нейтрона больше запаса энергии протона и электрона. Поэтому нейтрон может самопроизвольно превращаться в протон р с испусканием электрона и антинойтрипо v  [c.322]

Эта температура соответствует энергии порядка 10 эВ, достаточной для полной ионизации атомов с малым атомным номером. Но если атомы водорода и гелия ионизованы, то общее число частиц N надо увеличить, прибавив к нему число свободных электронов, и, как следует из уравнения (117), средняя температура окажется в 2—3 раза ниже значения, полученного в (118). Имеются данные, что Солнце не изотермично во всем его объеме, т. е. не находится при постоянной температуре. Тем не менее результат нашей оценки близок к тому, что получается при более обоснованных расчетах средней температуры ядра Солнца. Температура на его поверхности намного ниже, как показывает подсчет по потоку излучения, испускаемо.му Солнцем, эта температура составляет около 6-10 К. Наш результат (118) для средней температуры Солнца более чем в 10 раз превышает визуально оцениваемую температуру его поверхности.  [c.303]

Рассмотрим примеры ядерных реакций, возникающих под действием нейтронов. Такие реакции весьма многочисленны и разнообразны. Причина этого состоит в том, что для нейтрона не существует потенциального барьера ядра. Нейтрон с любой энергией (от долей электрон-вольта и до десятков мегаэлектрон-вольт) свободно проникает в любое ядро, включая и тяжелые. При этом каждый нейтрон приносит в ядро энергию, рав[1ую сумме его кинетической энергии и энергии связи в 7—8 Мэе. Возникающее при этом составное ядро оказывается в возбужденном состоянии и испытывает распад различными способами, в зависимости от степени возбуждения. Реакции, вызываемые нейтронами, можно подразделить на следующие виды  [c.281]

При завершении перехода дилатон-компрессон на всех уровнях организации системы срабатывает другой механизм диссипации энергии. Дело в том, что зона компрессона, то есть зона максимума напряжений является потенциальной ямой для отрицательно заряженной субстанции [62]. Поскольку в металле имеется значительное количество свободных электронов, вакансии, лишенные положительно заряженного атомного ядра, являются отрицательно заряженными областями Начинается движение вакансий в зоны компрессонов и объединение их в микропоры. При достижении критического расстояния между ними поры сливаются и образуется микротрещины (см. рис. 58). Они распространяются под углом 120° - факт, который наблюдался многими исследователями, но до сих пор не получивший точного объяснения.  [c.81]

Энергия взаимодействия двух парамагШггных молекул оценивается в 400-4000 кДж/моль, что сравнимо с энергией ковалентной связи, поэтому именно свободные парамагнитные радикалы будут образовывать ядро ССЕ, ассоциируя вокруг себя сольватные слои, состоящие, в основном, из диамагнитных соединений нафтено-<фоматического строения. Такое ассоциирование осуществляется за счет резонансного взаимодействия свободных радикалов с диамагнитными молекулами и мультипопь-мультипольного взаимодействия диамагнитных молекул между собой.  [c.154]

Известная разность масс нейтрона и протона дает возможность вычислить граничную энергию р-спектра нейтрона и функцию F и, следовательно, теоретически предсказать период полураспада т для свободного нейтрона. Оценка давала значение т 30 мин. Определение периода полураспада такого П14рядка для радиоактивного ядра не представляет никаких сложностей. Тем не менее опыт по обнаружению р-распада свободного нейтрона чрезвычайно труден. Эта трудность связана с тем, что из нейтронов нельзя приготовить неподвижную мишень для последующего измерения ее радиоактивности обычным способом. Свободные нейтроны движутся и их нельзя остановить без того, чтобы они не перестали быть свободными. При этом даже самые медленные нейтроны, образующиеся в результате замедления быстрых нейтронов до энергии теплового движения атомов среды , имеют (при комнатной температуре) скорость v 2 X Х10 Mf eK. Такой нейтрон, войдя в прибор для регистрации р-распада размерами I 10 см, через  [c.162]


Смотреть страницы где упоминается термин Свободная энергия ядра : [c.90]    [c.72]    [c.299]    [c.436]    [c.86]    [c.319]    [c.339]    [c.173]    [c.238]    [c.287]    [c.262]   
Некоторые вопросы теории ядра Изд.2 (1950) -- [ c.157 ]



ПОИСК



Свободная энергия



© 2025 Mash-xxl.info Реклама на сайте