Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Примеры ядерных реакций

Различный механизм протекания ядерных реакций (образование промежуточного ядра или прямое взаимодействие) может быть хорошо проиллюстрирован на примере ядерных реакций под действием дейтонов.  [c.457]

В качестве примеров ядерных реакций при малых энергиях мы приводим несколько реакций, используемых для получения моно-энергетических нейтронов, а именно /г-реакции  [c.193]

Примеры ядерных реакций  [c.194]

В обоих рассмотренных примерах ядро, испускающее у-лучи, имеет сравнительно небольшую энергию возбуждения, недостаточную для испускания нуклона. Этот результат может быть распространен и на многие другие процессы, приводящие к образованию ядер с энергией возбуждения, меньшей энергии отделения нуклона. К числу таких процессов относятся многочисленные ядерные реакции, одним из продуктов которых является ядро в возбужденном состоянии. При этом обычно энергия возбуждения ядра-продукта бывает меньше энергии отделения нуклона (или какой-либо другой частицы), и испускание -у-излу-чения является единственно возможным способом снятия возбуждения (если не считать рассматриваемого ниже явления внутренней конверсии).  [c.165]


Экспериментальное изучение ядерных взаимодействий показало, что во всех без исключения случаях суммарный электрический заряд частиц, вступающих в реакцию, равен суммарному электрическому заряду продуктов реакции. Кроме того, в ядерных реакциях обычного типа (без образования античастиц) сохраняется полное число нуклонов. В табл. 21 приведено несколько ядерных превращений, на примере которых можно проследить за выполнением этих законов сохранения.  [c.259]

Резонансный характер изменения сечения ядерной реакции при изменении кинетической энергии бомбардирующей частицы впервые был установлен именно на примере (а, р)-реакций на легких ядрах. Однако правильное объяснение механизма возникновения резонансов было дано Бором значительно позже (1936 г.). Это связано с тем, что ширина уровней и расстояние между ними для промежуточного ядра, образующегося в рассматриваемых реакциях, отличаются от соответствующих величин для реакций, идущих под действием медленных нейтронов на тяжелых ядрах, значительно большей величиной (Г 1 кэв, А 0,1 — 1 Мэе).  [c.443]

В качестве примера использования закона сохранения четности рассмотрим ядерную реакцию, в которой при столкновении протона р с ядром лития gLi образуются две а-частицы  [c.76]

Заметим, что принцип детального равновесия несравненно менее эффективен в применении к ядерным реакциям в узком смысле слова, чем к реакциям с элементарными частицами. Причину этого можно пояснить на примере реакций  [c.128]

В этом и следующем пунктах мы рассмотрим примеры резонансных ядерных реакций. Начнем с резонансных реакций, в которых составным ядром является нестабильное ядро изотопа бериллия iBe . Некоторые низшие уровни ядра iBe приведены на рис. 4.10 с указанием их энергий, спинов и четностей. Длинной горизонтальной линией отмечена энергия связи системы р -f gLi . Ряд уровней ниже этой черты не указан.  [c.138]

Конечно, введение изотопического спина само по себе ни к какой новой физике не приводит. Вспомним, однако, что в ядерных силах между нуклонами изотопический спин сохраняется. Обобщением ядерных сил являются сильные взаимодействия элементарных частиц. Оказывается, что закон сохранения изотопического спина справедлив для любых сильных взаимодействий, но нарушается электромагнитными и другими взаимодействиями. Этот закон, конечно, имеет определенное физическое содержание. Так, из него сразу следует, что массы частиц с одинаковым полным изотопическим спином должны мало различаться между собой (при отсутствии электромагнитных и слабых взаимодействий массы должны были бы совпадать). И действительно, например, массы заряженных и нейтральных пионов различаются всего лишь на несколько процентов. Закон сохранения изотопического спина проявляется и в ядерных реакциях. Для примера рассмотрим две реакции рождения пионов  [c.292]


В заключение рассмотрим воздействие космического излучения на атмосферу. В процессе генерации и поглощения ядерно-актив-ной компоненты в верхних слоях атмосферы происходят различные ядерные реакции. Благодаря этим реакциям в атмосфере, во-первых, поддерживается некоторое равновесное содержание радиоактивных изотопов,таких, как Н , С , Ве , S , i . В частности, только за счет космического излучения в земной воде концентрация тяжелого изотопа водорода — трития — поддерживается на уровне 10 %. Во-вторых, происходит накопление стабильных изотопов. Для примера укажем, что за время существования Земли 4-10 лет) космическое излучение увеличило распространенность изотопа лития Li на 0,03%, т. е. на величину, вполне измеримую современными масс-спектроскопическими методами.  [c.646]

Развиваются экспрессные методы активационного анализа без разрушения, опирающиеся на измерение короткоживущих активностей и даже просто продуктов ядерных реакций. Эти методы используются, в частности, для непрерывного автоматического контроля за ходом различных технологических процессов. Идентификация проводится по Р-распадным электронам, по у-квантам радиационного захвата (п, у), по нейтронам и другим частицам, вылетающим в результате ядерных реакций. Используются и у-кванты, возникающие при возвращении ядра в основное состояние после неупругого столкновения с нейтроном. Для повышения селективности анализа обычно измеряется энергия у-квантов, а для каскадных процессов часто используется регистрация на совпадения. Примером экспрессного анализа по короткоживущей активности может служить определение содержания кислорода посредством активации быстрыми нейтронами, вызывающими реакцию вО (п, p)7N . Период полураспада изотопа составляет всего лишь 7,3 с. Регистрируются обычно не 3-электроны, а жесткие у-кванты с энергиями 6,1, 6,9 и 7,1 МэВ, возникающие при переходе продукта распада — изотопа — в основное состояние. Примером использования ядерных реакций для элементного анализа может служить использование ракции 4Ве (у, п)4Ве для анализа на бериллий. Эта реакция имеет на редкость низкий порог 1,66 МэВ (обычно порог реакции (у, п) лежит в области 10 МэВ). Регистрируются вылетающие нейтроны. Малость порога, во-первых, делает метод исключительно селективным, а во-вторых, дает возможность использовать для активации дешевые и простые в обращении изотопные источники у-излучения.  [c.688]

Механизмы Я. р. Характер взаимодействия налетающей частицы с ядром зависит от её кинетич. энергии, массы, заряда и др. характеристик. Он определяется теми степенями свободы ядра (ядер), к-рые возбуждаются в ходе столкновения. Различие между Я. р. включает и их разл. длительность. Если налетающая частица лишь касается ядра-мишени, а длительность столкновения приблизительно равна времени, необходимому для прохождения налетающей частицей расстояния, равного радиусу ядра-мишени (т. е. составляет 10 с), то такие Я. р. относят к классу прямых Я. р. Общим для всех прямых ядерных реакций является селективное возбуждение небольшого числа опре-дел. состояний (степеней свободы). В прямом процессе после 1-го столкновения налетающая частица имеет достаточную энергию, чтобы преодолеть ядерные силы притяжения, в область действия к-рых она попала. Примерами прямого взаимодействия являются неупругое рассеяние нейтронов (п, п ), реакции обмена зарядом, напр, (р, п). Сюда же относят процессы, когда налетающий нуклон и один из нуклонов ядра связываются, образуя дейтрон, к-рый вылетает, унося почти всю имеющуюся энергию [т. н. р е а к ц и я п о д х в а т а (р, d) ], или когда ядру передаётся нуклон из налетающей частицы (реакция срыва, напр, (d, р)]. Продукты прямых Я. р. летят преим. вперёд.  [c.668]

Степень радиационного воздействия на материалы при облучении их ней- тронами зависит от состава изотопов в химических компонентах материалов. Например, в результате (п, а) 5-реак ции в материалах появляется гелий, влияющий на процессы радиационного распухания, ползучести, охрупчивания. Для примера можно указать и другие ядерные реакции, которые могут приводить к дополнительному изменению свойств материалов  [c.451]


Моу Кио перечислить много примеров из различных областей науки и техники, показывающих эффективность масс-спектрометрии и свидетельствующих о дальнейшем развитии этого метода. Масс-спектрометры нашли широкое признание при 1) точном измерении масс ядер 2) определении изотопной распространенности элементов 3) измерении некоторых ядерных реакций 4) количественном поэлементном анализе твердых, жидких и газообразных веществ 5) изучении структуры сложных молекул 6) изучении кинетики химических реакций 7) определении потенциалов ионизации, потенциалов возбуждения, теплоты образо-вания и испарения, энергии химических связей и т. д. 8) исследовании в органической химии 9) изучении явлений сорбции и десорбции газов 10) изучении геохимических процессов, определении природы образования отдельных пород, определении хронологии и истории процессов, происходящих в земной коре 11) исследовании состава метеоритного вещества 12) изучении состава газов и динамики фракционирования их в верхних слоях атмосферы 13) изучении различных аспектов жизнедеятельности в биологии и медицине по методу меченых атомов стабильными изотопами N, С, Ю, °В и др. 14) автоматическом контроле и управлении технологическими процессами в химии, металлургии, нефтепромышленности и других областях.  [c.194]

Непосредственное изучение концентрационных профилей может быть проведено при использовании резонансных ядерных реакций, т. е. реакций, для которых поперечное сечение пренебрежимо мало, если энергия частиц отличается от резонансной. Это автоматически означает, что ядерная реакция будет происходить на вполне определенной глубине, зависящей от энергии первичного излучения. Примером является реакция происходящая при 10 Дж. Существенное развитие метода стало возможным в связи с развитием вычислительной техники.  [c.168]

Примеры типичных ядерных реакций приведены в табл. 1.  [c.124]

Проиллюстрируем первые два закона сохранения на примере нескольких ядерных реакций  [c.172]

Другой областью применения логарифмического масштаба являются процессы, при которых изменение величины пропорционально самой величине. К числу таких процессов относятся поглощение света однородной средой, апериодический разряд конденсатора на сопротивление, затухание сигнала вдоль трансляционной линии, цепная химическая или ядерная реакция. В первых примерах соответствующая величина убывает с расстоянием или временем, в последнем — возрастает. В общем виде закон изменения соответствующей величины может быть представлен как  [c.275]

В приведенной ниже краткой сводке ядерные реакции систематизированы по падающим частицам, производящим реакцию. Описаны только те типы, для которых известны два или более примера (обычно более), есть случаи, для которых хорошо установлены от 50 до 100 примеров. Исключаются все реакции, заключающиеся просто в захвате с последующим испусканием той же частицы и имеющие поэтому характер упругого или неупругого рассеяния.  [c.19]

Таким образом, хотя коллапсы и представляют собой необратимые процессы, эти процессы весьма своеобразны они протекают абсолютно спонтанно и не поддаются управлению извне, если иметь в виду только отдельные элементарные акты. Возникает вопрос можно ли в принципе рассуждать о каких-либо формах управления квантовыми коллапсами Определенную надежду на положительный ответ дает пример цепной реакции в атомном реакторе. Ведь эта реакция тоже построена на элементарных квантовых переходах, каждым из которых управлять нельзя. Но если управлять вероятностями переходов, то они, будучи умноженными на большое число участников процесса, автоматически становятся соответствующими макроскопическими переменными ядерной кинетики. После этого управление становится возможным. Итак, для управления нужно иметь много участников процесса.  [c.289]

Можно привести многочисленные примеры подобных процессов. Ограничимся упоминанием о том, что при течении электрического тока в проводнике выделяется теплота. Теплота выделяется и в объемах тепловыделяющих элементов, и в замедлителе ядерного реактора. Кроме того, при протекании некоторых химических реакций в объеме рассматриваемого тела выделяется (поглощается) теплота.  [c.51]

Следуя логике данных рассуждений, можно сказать, что и в случае химической реакции также должна выделяться энергия, вызванная разницей между суммарной массой молекул углерода и кислорода и массой молекулы углекислого газа. Это действительно так, однако в данном случае дефект массы составляет всего лишь а. е. м., тогда как эта же величина для дейтрона равна 0,00234 а. е. м. Данный пример еще раз иллюстрирует, что ядерные силы в миллион раз превосходят химические, как это и следует из соответствующей разницы в энергиях, выделяемых за счет дефекта массы. Конечно, выделяемая ядерная энергия, выраженная в атомных единицах массы, кажется также незначительной, поскольку, как мы помним, значение переводного множителя в формуле Эйнштейна чрезвычайно велико. Однако все меняется, если использовать в качестве единиц измерения электрон-вольты Одна атомная единица массы равна 931 МэВ, следовательно, энергия, освобождающаяся при образовании ядра дейтерия и соответствующая дефекту массы 0,00234 а. е. м., равна  [c.36]

Энергии, выделенной при образовании одной молекулы двуокиси углерода (при сгорании угля), достаточно для того, чтобы началось горение соседних атомов углерода. Таким образом, химическое горение является примером самоподдерживающейся цепной реакции однажды начавшись, она быстро распространяется по всему горючему (по цепочкам участвующих в ней атомов). При благоприятных условиях ядерное расщепление также может стать самоподдерживающимся процессом, однако, как мы увидим, крайне мало химических элементов, которые можно рассматривать как ядерное горючее . Так, уран — единственный встречающийся в природе элемент, в котором расщепление может превратиться в самоподдерживающуюся реакцию, а плутоний — другое основное ядерное топливо — получается искус-  [c.50]


Рассмотрим примеры ядерных реакций, возникающих под действием нейтронов. Такие реакции весьма многочисленны и разнообразны. Причина этого состоит в том, что для нейтрона не существует потенциального барьера ядра. Нейтрон с любой энергией (от долей электрон-вольта и до десятков мегаэлектрон-вольт) свободно проникает в любое ядро, включая и тяжелые. При этом каждый нейтрон приносит в ядро энергию, рав[1ую сумме его кинетической энергии и энергии связи в 7—8 Мэе. Возникающее при этом составное ядро оказывается в возбужденном состоянии и испытывает распад различными способами, в зависимости от степени возбуждения. Реакции, вызываемые нейтронами, можно подразделить на следующие виды  [c.281]

Выше ( 45) уже отмечалось, что первые ядерные реакции осуществлялись учеными имен о с а-частицами. Например, реакция Резерфорда (а, р) принадлежит к первому типу реакций. Вторым примером реакции первого типа является реакция с алюминием 1зАР (а, р) i4Si . Энергия реакции Q == - - 2,26 Мэе, выход составляет примерно 1 протон на 10 а-частиц. В диапазоне значений энергии а-частиц от 3,92 до 6,61 Мэе для выхода (и сечения) реакции обнаружено шесть резонансных максимумов.  [c.288]

Дальнейшее изучение показало, что эта ядерная реакция — эндоэнергетическая (Q = —1,06 Мзв) и что она имеет выход У = 2-10 (при Та = 7,8 Мэе). Любопытно заметить, что, несмотря на эндоэнергетичностъ данной ядерной реакции, максимальная энергия образующихся протонов оказывается выше максимальной энергии протонов отдачи, возникающих при упругом рассеянии а-частиц той же энергии на водороде. Мы предлагаем в качестве упражнения разобрать этот пример с помощью законов сохранения энергии и импульса и объяснить, почему (7 р)реакц> ( р)отд-  [c.441]

Роль других механизмов проанализируем на примере реакции (р, р ). На рис. 4.14 изображен энергетический спектр протонов, вылетающих под углом = 35° в реакции 2вРе (р, р ). Энергия налетающих протонов равняется 62 МэВ. Высокоэнергичная часть спектра ( = 50—60 МэВ) возникает от прямой ядер-ной реакции (см. 10). Налетающий протон тратит часть своей энергии ( 10 МэВ) на прямое возбуждение простых степеней свободы ядра. Высокий максимум при энергии Е = 5—7 МэВ соответствует испарительным протонам. Область спектра от 10—12 МэВ до 50 МэВ не описывается ни статистической теорией ядерных реакций, ни рассматриваемыми ниже в 10 прямыми реакциями. Существование такой области спектра характерно для реакции (р, р ) не только на Fe , но и на других ядрах. На рис. 4.15 приведены  [c.148]

Отнюдь не преследуя цели создания справочника по кинематике ядерных реакций, мы, тем не менее, сочли целесообразным включить в книгу ряд таблиц, графиков, числовых данных и примеров. Так, в приложении I даны графики связи углов и энергий для нескольких широко исследуемых взаимодействий с участием легких ядер или элементарных частиц. В приложении II приводятся таблицы значений коэффициентов Клебша—Жордана и Рака, а также числовые таблицы коэффициентов Z, и X.  [c.7]

Эффективные Ф. д. нашли широкое применение в пе-релятинистской кваптовой механике, главным образом в квантовой теории многих тел (теория конденсированных тел, теория ядерных реакций и т. д.). Пример таких диаграмм приведен на рис. 11. Они изображают расщепление дейт])она (двойная линия)  [c.295]

Ч. П12 сложной системы, состоящей из двух подсистем с Ч. соответственно П и П2, равна в системе центра инерции П з = П1П2(—1) , где Ь — орбитальный момент относит, движения подсистем 3) Ч. состояния составной частицы, определенная, согласно (3), в системе ее центра инерции, может трактоваться как внутренняя Ч. этой частицы, если ее структура несущественна для рассматриваемой конкретной проблемы. Эти 3 правила, справедливые и в релятивистской теории (для частиц с неравными нулю массами покоя), достаточны для использования закона сохранения Ч. ири исследовании структуры атомов и ядер, ядерных реакций и реакций сильных взаимодействий элементарных частпц. Из 1-го и 3-го правил следует, что внутренняя Ч. ядра (атома) совпадает с четностью чнсла нуклонов (электронов) в пезаполпеп-ных оболочках с нечетным орбитальным моментом р, /,...). Наир., нечетны ядро 1Л (3 нуклона в /1-оболочке) и атом фтора (5 электропов в 2Р-оболочке). Примером применения 2-го правила может служить ядерная реакция р— а-)-а17,2Л/эв, к-рая,  [c.412]

Когда конечные продукты реакции сильно отличаются от налетающей частицы (пример такой реакции — деление ядер), механизм С. я. является основным. В противном случае может быть значительным вклад прямых процессов (см. Прямые ядерные реакции). Описание ядерной реакции при номощи С. я. целесообразно, когда время жизни С. я. т для распада данного типа велико но сравнению с характерным для прямых процессов времени = Л/г> 10 сек, где II — радиус ядра, v— скорость частицы. Основной процесс распада С. я. — испускание (испарение) нейтронов. Для этого пропесса t/iq = ехр (В/Г), где В — энергия связи нейтрона, а Т — темп-ра С. я. (см. Статистическая модель ядра).  [c.586]

В зависимости от массовых чисел (VI.4.1.2 ) ядер различаются реакции на легких ядрах (Л< 50), реакции на средних ядрах (бОСЛсЮО) и реакции на тяжелых ядрах (Л>100). По характеру происходящих ядерных превращений ядерные реакции весьма разнообразны. (Некоторые важные примеры приводятся в дальнейшем.)  [c.485]

Примеры такой записи — уравнения (16.5.15) и (16.5.16). Число независимых реакций ограничено числом реагирующих компонентов. В однородных системах, в которых изменение концентраций всех реагирующих компонентов определяется только химическими реакциями, для определения состояния системы вместо концентрации пи. можно выбрать степень полноты реакции Химический потенциал ли. функция р и Т. Однако, так как степень полноты реакции связывает изменения, как минимум, двух компонентов, в системах, содержащих г реагирующих веществ, имеется максимум (г — 1) независимых степеней полноты реакций Таким образом, все химические потенциалы могут быть выражены через функцию , Т). Откуда следует, что при любых заданных давлении р и температуре Т имеется только (г — 1) независимых степеней полноты реакций. Так как сродство Ак — линейная функция химических потенциалов, в системе с г реагируюш,ими компонентами могут быть максимум (г — 1) независимых величин сродства. (Иногда этот факт выводится с использованием закона сохранения масс в химических реакциях. Несмотря на то что это может быть справедливо в обычных химических реакциях, этот аргумент не сохраняет общность, например, для ядерных реакций, когда массы изменяются. В действительности, масса связана с химической реакцией, главным следствием которой является изменение числа молекул различных реагирующих компонентов.)  [c.356]

ГИГА... (от греч. gigas — гигантский), приставка к наименованию ед. физ. величины для образования наименования кратной единицы, равной 10 исходных ед. Обозначения Г, О. Пример 1 ГГц (гигагерц)=10 Гц. ГИГАНТСКИЙ РЕЗОНАНС, широкий максимум в зависимости сечения о ядерных реакций от энергии возбуждения ядра в результате его вз-ствия с налетающей ч-цей или -квантом  [c.116]


Смотреть страницы где упоминается термин Примеры ядерных реакций : [c.195]    [c.228]    [c.388]    [c.275]    [c.182]    [c.122]    [c.149]    [c.18]    [c.22]    [c.196]    [c.379]    [c.580]    [c.537]   
Смотреть главы в:

Справочник по элементарной физике  -> Примеры ядерных реакций



ПОИСК



Реакции ядерные



© 2025 Mash-xxl.info Реклама на сайте