Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод пузырьковый

В пятидесятые годы бурно развиваются новые, более совершенные методы регистрации частиц — метод пузырьковой камеры и эмульсионной камеры.  [c.14]

Пузырьковые камеры наряду с эмульсионными камерами сыграли очень большую роль при изучении свойств новых частиц. В настоящее время метод пузырьковой камеры является, пожалуй, самым эффективным методом изучения свойств элементарных частиц, хотя в самое последнее время очень интересные результаты были получены с помощью искровой камеры (см. 83, п. 5).  [c.593]


Пневматический метод пузырьковой дефектоскопии применяют для контроля герметичности, т. е, способности сосудов не пропускать находящиеся в них газы. Испытываемую конструкцию наполняют сжатым воздухом либо обдувают швы струей сжатого воздуха. С обратной стороны смазывают швы пенообразующей жидкостью, и по появлению пузырьков воздуха судят о наличии дефектов. Ввиду опасности пневматического испытания (возможности разрыва конструкции давлением воздуха) его производят по специально разработанному проекту, предусматривающему меры безопасности.  [c.300]

Метод пузырьковой кумуляции , позволяющий осуществлять интенсивное разрушение эластичных и волокнистых материалов в большем активном объеме, осуществлять очистку поверхностей и многое другое.  [c.252]

Таким образом, радиус р круговой траектории, описываемой заряженной частицей в магнитном поле, может служить прямой мерой релятивистского импульса. Последнее соотношение лежит в основе важнейшего прямого некомбинированного метода измерения импульса заряженной релятивистской частицы. Этот метод используется при анализе фотографий, полученных с помощью пузырьковой камеры (см. гл. 15).  [c.403]

Пробеги а-частиц в разных средах измеряются различными методами. В газообразных— с помощью ионизационной камеры и камеры Вильсона, в жидких — с помощью пузырьковых камер, в твердых — с помощью фотографической эмульсии. Применяются также различные комбинированные способы с использованием фильтров из тонких пленок или фольг и счетчиков.  [c.111]

Упругое рассеяние нейтронов очень широко используется для регистрации быстрых нейтронов методом наблюдения следов ядер отдачи (чаще всего протонов отдачи) в различных трековых приборах (камера Вильсона, ядерная фотоэмульсия, пузырьковая камера и др.), а также для регистрации ядер отдачи ионизационными методами (ионизационные камеры, счетчики).  [c.290]

Пузырьковая камера объединяет преимущества обоих методов и не имеет их недостатков. При больших размерах, сближающих ее с камерой Вильсона, она имеет плотность рабочего вещества такого же порядка, как фотографическая эмульсия. Цикл работы пузырьковых камер в несколько раз меньше, чем у камер Вильсона, и составляет 5—10 сек (а в специальных конструкциях его удалось сократить до 0,2 сек). Очень ценным свойством пузырьковой камеры является возможность использовать в качестве рабочего вещества жидкости с самыми разнообразными свойствами, например пропан, фреон, ксенон, водород, гелий. Это позволяет изучать те или иные явления наиболее эффективно.  [c.592]


В последнее время Л°-частицы изучаются с помощью пузырьковых камер, помещенных в магнитное поле, которое позволяет идентифицировать -протоны и я -мезоны Л°-распада и определять их импульсы, а также при помощи метода эмульсионной камеры, в которой при достаточно больших ее размерах могут укладываться полные пробеги как протона, так и Jt-мезона следовательно, методом эмульсионной. камеры также может быть проведен. полный анализ Л°-распада.  [c.601]

Акустические методы основаны на измерениях амплитудно-частотных характеристик шумов, сопровождающих течение неоднородных сред. Их применяют при исследовании газожидкостных потоков, имеющих пузырьковую структуру. Пузырьки газа или пара, размеры которых близки к резонансному для данной частоты звука, вызывают значительное затухание звуковой энергии. Для случая, когда амплитуда колебаний мала по сравнению с размерами пузырька, резонансная частота связана с радиусом пузырька соотношением  [c.242]

Из качественного описания характерных структур двухфазных потоков ясно, насколько важно правильно идентифицировать эти структуры при расчете гидравлического сопротивления и теплообмена. Представляется очевидным, например, что при расчетах пузырькового и дисперсно-кольцевого режимов невозможно исходить из одинаковой модели. В настоящее время разработано множество методов определения границ режимов двухфазных течений (что само по себе свидетельствует об отсутствии общепринятой методики расчета). Обычно используется двумерная система координат, позволяющая на плоскости изобразить области, относящиеся к различным структурам. Координаты у разных авторов различны. Во многих случаях они размерны, что предопределяет их использование лишь для конкретных сис-  [c.303]

С помощью этого метода для пузырькового и снарядного режимов течения воздухо-водяных смесей при скоростях, меньших  [c.172]

Методы обобщения опытных данных при пузырьковом режиме кипения.  [c.183]

Почему нельзя использовать метод регулярного режима для определения коэффициента теплоотдачи при пузырьковом кипении на поверхности шара  [c.177]

Отвод тепла в режиме пузырькового кипения являегся одним из наиболее совершенных методов охлаждения поверхности нагрева. Он находит широкое применение в атомных реакторах, при охлаждении реактивных двигателей, а также в ряде других технических устройств.  [c.107]

Вследствие сложного, статистического характера процесса пузырькового кипения, а также влияния поверхностных условий задача обобщения данных по теплоотдаче является весьма сложной. Определенные затруднения возникают уже при установлении критериальных уравнений. Известно несколько подходов, однако ни один из них не является вполне строгим. Из имеющихся предложений в этом направлении наиболее последовательным является анализ [Л. 45]. Автор [Л. 51] предложил позже также прямой приближенный метод описания теплоотдачи.  [c.118]

ПНЕВМОГИДРАВЛИЧЕСКИЙ (ПУЗЫРЬКОВЫЙ) МЕТОД  [c.66]

Закрепление концов рулонной полосы после навивки обечаек на опытном участке ХТЗ выполняли ручной дуговой сваркой. Наружные и внутренние нахлесточные швы обечаек, как показано в работе [3], сваривали двумя дугами в раздельные ванны . Разработанный способ и режимы сварки (табл. 1) обеспечивали получение швов с требуемой высотой усиления и плавным переходом к основному металлу. Результаты контроля швов неразрушающими методами подтвердили достаточную их стойкость против образования дефектов. Так, количество обечаек с дефектами во внутренних нахлесточных швах, приводящих к нарушению герметичности (данные вакуум-пузырькового контроля), не превышало 2,7 %, а с другими дефектами, требующими исправления (данные рентген-телевизионного контроля) — 4,7 %. В обоих случаях образование дефектов связано с отклонениями от заданных параметров сварочных процессов в част-  [c.163]

Данные рентгенотелевизионного контроля соединений труб, сваренных внутренними кольцевыми швами, подтвердили их вполне удовлетворительную стойкость к образованию внутренних дефектов. Так, число труб с недопустимыми дефектами (главным образом, единичными порами) в таких швах не превышало 12 %. Контроль герметичности соединений вакуум-пузырьковым методом, осуществляемый в местах пересечения внутренних кольцевых и нахлесточных швов, также выявил лишь ограниченное число дефектов. Однако, как следует из результатов испытания участка газопровода, сооруженного из многослойных труб данной партии, с целью повышения надежности таких труб необходим контроль герметичности не только в местах указанных пересечений, но и внутренних кольцевых швов по всей их длине.  [c.166]


Метод контроля пузырьковый по ГОСТ 3285—77.  [c.475]

Переходя к рассмотрению многофазных систе1М, проанализируем движение одиночной деформируемой частицы. Рассмотрим процессы переноса количества движения, тепловой энергии и массы, а также химические реакции. По многим частным вопросам читателю придется обратиться к работам, посвященным более просты.м системам. В эту главу, однако, будут включены общие предпо-сы.чки II библиография, относящиеся к многофазным системам. Будут изложены дополнительные подробности, касающиеся дина-.МИКИ частиц. Мы надеемся, что обзор физических процессов, наблюдаемых при двия ении деформируемых частиц, облегчит (при соответствующих ограничениях) при.чожение методов, изложенных в гл. 4—10, к пузырьковым и капельным системам.  [c.105]

В работе [96] исследовались акустические свойства пузырей воздуха в воде для определения влияния пузырей, образующихся в следах кораблей и подводных лодок, на распространение звука. Были проведены измерения коэффициентов затухания звука при прохождении через пузырьковый экран (430 X 76 мм при различных вертикальных размерах до 152 мм) и отражение звука от этого экрана при различной концентрации пузырей в некотором интервале их размеров. Пузыри были образованы при помощи генератора пузырей (микродисперсера). Радиусы пузырей измеряли оптическими и акустическими методами. Акустические измерения сводились к определению резонансной частоты сод пузыря  [c.261]

В данном случае, как и в случае течения газожидкостных систем в трубах (разд. 3.7), реа.лизуются следующие режимы течения ко.льцевой, пузырьковый, снарядный, пенный и в виде водяной пыли. Простейшей, но практически нереализуемой расчетной моделью является модель изэнтропийного гомогенного расширения. В другом приближенном методе используется модель замороженного течения, т. е. течения без тепло-и массообмена между фазами (постоянное паросодержание). Эти  [c.334]

Пятидесятые годы были ознаменованы бурным развитием новых, весьма совершенных методов регистрации частиц — методов эмульсионной камеры и пузырьковой камеры. С их помощью сначала в составе космических лучей, а затем и в пучках частиц, выведенных из ускорителей, были обнаружены новые нестабильные частицы /С-мезоны с массой 966 Ше и гипероны с массой, превосходящей массу нуклона. Триумфом ядерной физики последних лет было обнаружение антипротона, антинейтрона и других античастиц проведение прямого опыта, доказывающего существование нейтрино изучение структуры нуклонов, обнаружение несохранения четности в слабых взаимодействиях и открытие эффекта Мёссбауэра.  [c.24]

Газовые методы являются более чувствительными по сравнению с жидкостными. Наиболее простыми в данной группе являются пузырьковый и манометрический методы. В первом течь обнаруживается по пузырькам, для чего изделие помещают в ванну с водой (выявляемый условный диаметр дефекта менее 10 мм), во втором регис грация течи осу1цествляется по показанию манометра при падении давления пробного газа. Манометрический метод не получил широкого распространения из-за невозможности определения местоположения дефекта и используется как вспомогательный.  [c.207]

Газовое течеискание является более чл вствительным, чем жидкостное, но его применение регламентировано габаритами конструкции Наиболее распространенный метод газового течеискания — пузырьковый, При этом изделие помещают в сосуд с водой и фиксирч ют по появляющимся п зырькам наличие течи  [c.63]

Изложены общие принципы ноетроення математического описания многофазных систем особое внимание уделено 1)ормулировке универсальных и специальных условии совместности на межфазных границах. Анализируется гидростатическое равновесие газожидкостных систем волновое движение на поверхности тяжелой жидкости, классические неустойчивости Тейлора и Гельмгольца гидродинамика гравитационных пленок. Рассмотрены закономерности стационарного движения дискретной частицы (капли или пузырька) в несущей фазе, механизм и количественные характеристики роста паровых пузырьков в объеме равномерно перегретой жидкости и на обогреваемой твердой стеикс. Приводятся характеристики течения газожидкостных потоков в канале, методы расчета истинного объемного паросодержания и трения в потоках различной структуры методы расчеты теплообмена и кризисов при пузырьковом кипении в трубах.  [c.2]

Гл. 7 и 8 в наибольшей степени имеют прикладной характер. В гл. 7 вводятся основные количественные характеристики, обычно используемые при одномерном описании двухфазных потоков в каналах расходные и истинные паросодержания, истинные и приведенные скорости фаз, скорость смеси, коэффициент скольжения, плотность смеси. При рассмотрении методов прогнозирования режимов течения (структуры) двухфазной смеси акцент делается на методы, основанные на определенных физических моделях. Расчет трения и истинного объемного паросодержания дается раздельно для потоков квазигомогенной структуры и кольцевых течений. В гл. 8 описаны двухфазные потоки в трубах в условиях теплообмена. Приводится современная методика расчета теплоотдачи при пузырьковом кипении жидкостей в условиях свободного и вынужденного движения. Сложная проблема кризиса кипения в каналах излагается прежде всего как качественная характеристика закономерностей возникновения пленочного кипения при различных значениях  [c.8]

Вывод основных уравнений механики, а также методы описания внутрифазных и межфазных процессов даны в гл. 1 на примере дисперсных смесей (газовзвесей, пузырьковых жндко-стей), а такн<е конденсированных упругопластических сред, претерпевающих полиморфный фазовый переход типа графит алмаз, а-железо е-железо и т. д. В других главах в зависимости от рассматриваемой среды и процесса эти уравнения обобщаются  [c.5]


В данном параграфе изложен более общий по сравнению с 6 подход к численному модели )оваипю и исследованию одномерных нестационарных двпжепп i пузырьковых сред на основе двухтемпературной односкоростно ii схемы с несжимаемой несущей жидкостью (см. 5 гл. 1)., Данным методом можно авали-  [c.47]

Трудность осуществления пленочного режима кипения при электрическом обогреве состоит в резком повышении температуры поверхности при переходе от пузырькового к пленочному, что вызывает пережог рабочего элемента, если для его изготовления не применяются специальньк тугоплавкие материалы. После осуществления указап 1ых режимов кипения тем или иным способом опыты прэ водятся в обратном направлении. Для этого производится постепенное снижение теплового потока до тех поз, пока не произойдет переход пленочного режима кипения в пузырьковый. При этом измерения ведутся теми же методами и средствами, какие применяются для исследования других режимов кипения. Трудности осуществления пленочного режима кипения иногда удаегся до некоторой степени обойти, как это сделано, например, в последованиях, описанных в [Л. 6-6, 6-27]. В них для получения пленочного режима применяются относительно невысокие значения тепловых потоков н температур стенки и, кроме того, не требуется проходить первый кризис кипения. Чтобы избежать  [c.312]

После двух кратких испытаний на реакторе Янки была проведена критическая оценка действия на реактивность мягкого регулирования на реакторе в Сакстоне [17]. Сакстонский реактор имел расчетную мощность 23,5 Мет (тепл.) при 140 кГ1см . Он мог работать без мягкого регулирования до 20 Мет. При 23,5 Мет примерно 16% поверхности зоны находится в кипящем режиме. Программа испытаний включала все возможные способы воздействия на реактивность. Основным методом оценки было детальное и точное сравнение предсказанной реактивности зоны и наблюдаемой реактивности установки. Все предсказания реактивности основывались на физических параметрах зоны, полученных при работе зоны со стержнями перед работой с мягким регулированием. Особенное внимание было уделено переходу от условий с пузырьковым кипением к условиям без пузырькового кипения. Работа с мягким регулированием началась 27 мая 1963 г. и продолжалась до 22 ноября 1964 г. Был проведен ряд специальных опытов для решения вопросов, изложенных в разд. 6.6. Рис. 6.16 является частью опытных данных, показывающих условия работы и необъяснимую накапливающуюся разницу между измеренным и предсказанным изменением реактивности в установке в единицах 0,1% Ak/k. Отметим, что наблюдаемая необъяснимая реактивность в основном положительная в рассматриваемый период и заметно не изменяется с увеличением мощности или изменением концентрации бора. Физические испытания показали, что накопление бора, если и происходило, то не влияло в какое-либо время на реактивность  [c.177]

Рассматриваются различные представления о влиянии поверхности на пузырьковое кипение жидкостей. В результате проведенных теоретических и экспериментальных исследований о привлечением теории поверхностных явлений удается достигнуть определенного прогресса в изучении роли поверхности в процессе кипения. Особенно плодотворным оказывается анализ методами термодинамики различных стадий пузырькового кипения и особенно его первой стадии — возникновения зародышей паровых пузырьков. Такой анализ открывает новые широкие возможности дальнейшего изучения закономерностей влияния поверхности на кипение. В частности, совместное решение уравнений Лапласа—Гиббса и Клапейрона—Клаузиуса дает возможность определить размеры зародышей паровых пузырьков с учетом реальных размеров неровностей шероховатости поверхностп парогенерирующих элементов установок и тем самым априорно определить возможную плотность центров парообразования и другие характеристики кипения жидкости на рассматриваемой новеркности.  [c.289]

Изложены результаты исследований двухфазных сред капельной и пузырьковой структуры в теплообменниках, проточных частях влажнопаровых турбин, в трубах, соплах, местных сопротивлениях различного рода. Описаны методы экспериментального исследования и испытаний оборудования в лабораторных и эксплуатационных условиях, приведены оригинальные расчетные методики. Даны рекомендации по оптимизации параметров сопловых и рабочих решеток влажнопаровых ступеней.  [c.2]

Предложен термодинамический метод обобщения физических характеристик рабочих сред, коэффициентов теплоотдачи и критиз ческих нагрузок при развитом пузырьковом кипении.  [c.34]


Смотреть страницы где упоминается термин Метод пузырьковый : [c.209]    [c.3]    [c.2]    [c.7]    [c.93]    [c.175]    [c.523]    [c.244]    [c.27]   
Машиностроение Энциклопедия Оборудование для сварки ТомIV-6 (1999) -- [ c.475 ]



ПОИСК



Измерение веса пузырьковым методом

Методы измерения расхода жидкости ударных волн в пузырьковой жидкости

Методы описания межфазного тепло- и массооомспа и пузырьковой среде

Новые методы регистрации частиц. Эмульсионная и пузырьковая камеры

Пневмогидравлический (пузырьковый) метод



© 2025 Mash-xxl.info Реклама на сайте