Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Соединение Податливость

Фланцевые соединения — Податливость  [c.320]

Рис. 5.79. Зависимость относительной прочности v болтовых соединений податливого металла 1, волокнистого ПКМ 2 и хрупкого материала 3 от отношения диаметра Рис. 5.79. Зависимость <a href="/info/42717">относительной прочности</a> v <a href="/info/38968">болтовых соединений</a> податливого металла 1, волокнистого ПКМ 2 и <a href="/info/5934">хрупкого материала</a> 3 от отношения диаметра

Для большинства практических случаев расчет податливости деталей связан с большими трудностями. Между тем расчеты и испытания конструкций показывают, что отношение 1д/(Хб+ д) невелико и не превышает обычно 0,2.. . 0,3. Поэтому для приближенных расчетов соединений без мягких прокладок принимают  [c.35]

При температурах свыше 150°С для легких сплавов и 300°С для конструкционных сталей в затянутых соединениях становятся существенными явления релаксации и заедания. Релаксация связана с ползучестью материала при высоких температурах. Она проявляется в постепенном ослаблении затяжки соединения. При этом нарушается одно из главных условий прочности и герметичности соединения. Для уменьшения релаксации необходимо повышать упругую податливость деталей соединения, применять материалы с высоким пределом ползучести (например, хромистые и хромоникелевые стали (181), снижать допускаемые напряжения для болтов.  [c.36]

Место установки муфты непосредственно влияет на ее габариты на быстроходных валах меньше крутящий момент, поэтому габаритные размеры муфты будут меньше, меньше ее масса и момент инерции, упрощается управление муфтой (например, сцепной). Если соединение привода и исполнительного механизма выполнено не на общей раме, от муфты требуются в первую очередь сравнительно высокие компенсирующие свойства без повышенных требований к малому моменту инерции. Важным показателем муфт является их компенсирующая способность, зависящая от величины возможного взаимного перемещения сопряженных деталей (см. рнс. 15.1) или от величины допускаемых упругих деформаций специальных податливых элементов ([А] — допускаемое осевое смещение [е] — допускаемое радиальное смещение [а] — допускаемый угол перекоса). Предохранительные муфты устанавливают на тихоходных валах, чем достигается надежность защиты деталей привода от перегрузки и повышение точности срабатывания муфты, пропорциональной величине крутящего момента. Муфты располагают у опор и тщательно балансируют. При монтаже добиваются соосности соединяемых валов. Комбинированные муфты, выполняющие упруго-компенсирующие и предохранительные функции (и другие) объединяют качества двух и более простых муфт. Специальные муфты часто конструируются с использованием стандартных элементов (пальцев, втулок, упругих оболочек, штифтов и др.). Проверочный расчет наиболее важных деталей муфты, определяющих ее работоспособность, производится только в ответственных случаях при необходимости изменения их размеров или же применения других материалов. При подборе стандартных муфт  [c.374]


Стяжной- хомут конусно-фланцевых соединений должен раскрываться полностью так, чтобы его можно было завести на фланцы сбоку и по оси, и обеспечивать по возможности равномерную затяжку фланцев по окружности, т. е, быть податливым в радиальных направлениях. Хомуты обычно делают из половин, соединенных осью и стягиваемых болтом (рис. 389, а). В конструкции б в стенках хомута проделаны радиальные прорези для увеличения податливости для предотвращения изгиба болт оперт на сферических шайбах. Гибкий хомут (рис. 389, в) состоит из стальной ленты с приварными -.секторами 1 корытного сечения. Стяжной болт пропущен через шарнирную ось 2 и ввертывается в цилиндрическую гайку 3. -  [c.542]

С течением времени затяжка ослабевает из-за смятия (при циклических нагрузках) и истирания посадочных поверхностей, поэтому необходимо периодически подтягивать соединение. При достаточной податливости ступицы и вала (полые валы) падение натяга до известной степени компенсируется упругой отдачей ступицы и вала.  [c.304]

Чтобы прийти к реалистической задаче оптимального проектирования балок с заданной упругой податливостью под действием заданных нагрузок, примем, что имеющееся в нашем распоряжении пространство представляет собой цилиндр или призму, у которых плоскостями симметрии служат плоскости ху и XZ, а длиной является пролет балки. Типичное поперечное сечение балки должно состоять из двух симметричных полок (заштрихованных на рис. 1), соединенных тонкой стенкой, срединная плоскость которой совпадает с плоскостью ху. В соответствии с обычной теорией изгиба балок предполагается, что осевые напряжения воспринимаются только полками. Если нагрузки прилагаются к стенке, то поверхности полок будут свободны от усилий. Так как конечные сечения балки, так же как внешние поверхности полок A D и A D на рис, 1, расположены на Vo, то проектировщику предоставляется выбор внутренних поверхностей полок ABD и A B D на рис. 1. Уравнения этих поверхностей запишем в виде у = Уо xz). Строго говоря, данная задача  [c.80]

Как видно из формулы (Х.7), чем меньше р,, тем больше критическая, а следовательно, и допускаемая нагрузка стержня. Например, нагрузка стержня, заделанного двумя концами, может быть в 16 раз больше нагрузки стержня, заделанного одним концом. Поэтому там, где возможно, следует осуществлять жесткую заделку обоих концов стержня. Однако это не всегда можно осуществить на практике. Элементы, к которым прикрепляются концы рассматриваемого стержня, всегда более или менее упруги, податливы, что вносит некоторую неопределенность в расчет. Поэтому весьма часто даже при жестком соединении концов стержня с другими элементами расчет в запас устойчивости ведут, предполагая шарнирное закрепление обоих концов.  [c.269]

В конструкции уплотнительного устройства (рис. 13.1, б) применены два резьбовых соединения — накидной гайки 3 со штуцером 4 и штуцера 4 с корпусом 6. Герметичное уплотнение между штоком 1 и штуцером 4 создано сальниковым уплотнением, состоящим из уплотнительной набивки 7, зажимаемой втулкой 2 при завинчивании гайки 3. Уплотнительную набивку выполняют из шнура, изготовленного из пряжи и пропитанного густой смазкой или графитовым порошком, или в виде колец из резины, тефлона. Объем набивки выполняют таким, чтобы между торцами втулки 2 и штуцера 4 после сборки нового соединения оставался зазор, в пределах которого можно перемещать втулку 2 во время эксплуатации для компенсации износа набивочного материала, подтягивая гайку 3. Торцевое уплотнение между штуцером 4 и корпусом 6 обеспечивает прокладка 5 из податливого материала паронита, резины и т. п.  [c.193]

Величины, обратные коэффициентам упругости (жесткости), называются коэффициентами податливости. Итак, при последовательном соединении пружин податливость эквивалентной пружины равна сумме податливостей данных пружин. Из формулы (4) находим коэффициент упругости с эквивалентной пружины  [c.88]

В разветвленных кинематических цепях звено входит в несколько кинематических пар и образует параллельные структурные цепи. В этих случаях перемещение входного звена, вызванное податливостью всей кинематической цепи, определяется в основном деформациями наиболее жестких соединений. Жесткость механизма при параллельном соединении упругих звеньев равна сумме жесткостей его звеньев Сз,- и кинематических пар Спс-  [c.295]


Другим не менее важным моментом, имеющим место при нагружении соединений, ослабленных несимметричными мягкими прослойками (например наклонными, см. рис. 2.7,г), является существенное влияние поперечной податливости на получаемые результаты Следует отметить, что на практике, как правито, наблюдается существенное различие в поперечной податливости образцов при их испытаниях и конструкции в процессе ее нафужения, что свидетельствует о проблематичности пря юго переноса результатов, полученных на образцах, на реальные конструкции.  [c.156]

Отсюда видно, что с увеличением податливости соединяемых деталей при постоянной податливости болта коэффициент внешней нагрузки будет увеличиваться. Поэтому при соединении металлических деталей без прокладок принимают и = 0,2...0,3, а с упругими прокладками — к = 0,4...0,5.  [c.46]

При анизотропии более общего вида, когда указать плоскости симметрии нельзя или когда они не параллельны оси растяжения, деформация может иметь более сложный характер, растяжение может сопровождаться перекашиванием стержня, как показано на рис. 2.2.3. Это легко представить себе, если выбрать образец, состоящий из набора жестких пластин, наклонных но отношению к оси и соединенных между собой прослойками из податливого материала, как показано на том же рисунке.  [c.48]

Равенства (5.68) и (5.71) дают возможность сделать вывод, что при последовательном соединении упругих связей преобладающее влияние на жесткость приведенной системы оказывают наиболее податливые элементы приводимой системы, при параллельном — наиболее жесткие.  [c.103]

В табл. 7.2 приведены значения переходных коэффициентов, полученные на основе численного анализа напряженно-деформированного состояния покрытий с податливыми стыковыми соединениями. Податливость стыков принима-  [c.227]

Флагопит 6 — 371 Фланкирование зубьев 5 — 375 Фланцевые соединения — Податливость  [c.488]

Для компенсации отклонения от соосности кинематических звеньев применяют подвижное соединение генератора с валом. Его выполняют с помощью упругих элементов или жестких шарниров. В конструкции (рис. 15.9, а) упругий элемент выполнен в виде резиновой шайбы 2, привулканизированной к металлическим дискам 1 п 3, которые затем соединяют с кулачком и валом. Резиновый элемент по рис. 15.9, б обладает повьпиенной податливостью при угловых перекосах. Недостатком этих соединений является снижение прогости резины с течением времени.  [c.243]

В соединении на рис. 1.27 набор тарельчатых пружин существенно увеличивает податливость системы болта, а следовательно, уменьшает нагрузку на болт. В общем случае задачу о расчете АцИ кц приходится решать с учетом конкретных, сложных и многообразных деталей (например, литые крышки цнлиадров с ребрами, пустотами и т. п.).  [c.35]

Расчет прессовых соединений на коррозионно-механическое изнашивание пока не разработан, но известны методы снижения или даже устра1(ения этого вида изнашивания повышение твердости поверхностей посадки уменьшение напряжений а и т путем увеличения диаметра в месте посадки увеличение давления посадки р, а следовательно, и сил трения, которое сокращает распространение деформаций внутрь ступицы и уменьшает относительные перемещения образование кольцевых проточек по торцам ступицы (см. рис. 7.8). Эти проточки увеличивают податливость ступицы, позволяют ей деформироваться вместе с валом и уменьшают микросдвиги.  [c.90]

В расчете несущей способности по ГОСТ 21425—75 учитывается лишь радиальное циклическое скользь ение, а наличие перекосов, эксцентриситетов нагрузки, погрешносей монтажа, влияние различной податливости вала и ступицы уштывается соответствующими коэффициентами. Названный ГОСГ не может использоваться для зубчатых соединений валов со шкивами, паразитными шестернями и специальных соединений для юмпенсации перекосов.  [c.74]

Однопроходная сварка не может обеспечить симмет1)ии сварочных деформаций из-за неравномерности поперечной усадки по периметру кольцевого шва, поэтому сварку выполняют многослойной. Полный провар Г-, корне шва достигается специальной конструкцией разделки или применением остающихся кольцевых подкладок. Оригинальная конструкция стыка показана на рпс. 10.7. Посадоч- 1ая ступенька у собираемых деталей и упорное кольцо из малоуглеродистой стали толщиной 2 мм обеспечивают высокую точность сборки ротора и необходимую податливость стыка при сварке. Это весьма важно для предупреждения образования трещин в соединении. Притупление разделки шва выбрано нз условия получения полного провара корня шва. Специальные наклонные каналы уменьшают жесткость кромок при выполнении корневого слоя и тем самым предотвращают образование в нем трещин, а также обеспечивают  [c.352]

Наблюдаемые иногда в соединениях с натягом явления сползания при осевой нагрузке, существенно меньше расчетной статической, но действующей в сочетании с циркуляционной радиальной или изгибающей, связывается с касательной контактной податливостью деталей и дискретностью пятен контакта. При вращении часть пятен в периодически разгружаемой стороне стыка выходит из контакта и вновь начинает передавать нагрузку только после накопления соответствующих касательных контактных упругих перемещений. При этом возможны микросмещения.  [c.82]

В соединениях с натягом нагрузка распределяется по лпине неравномерно, и у торца ступицы со стороны передачи враш,ающего момента возникают острые пики напряжений. Это легко представить, если считать соединяемые детали одним целым. В частности, пики напряжений сдвига у торца ступицы целого тела неизбежны вследствие большого перепада диаметров и отсутствия закруглений у внутреннего угла. Некоторое сглаживание пиков происходит из-за касательной податливости поверхностных слоев.  [c.82]

В резьбовом соединении с 1айкой, работающей иа растяжение, и с нормальной податливостью винта и гайки. чнюра распределения давления между витками получается с минимумом в средней части длины свинчивания.  [c.108]

При небольших толщинах еоединяем(.1х деталей (к , Ъа) конус заменяют для упрощения расчетов полым цилиндром. Податливость соединения, показанного на рис. 7.25, а, при tga = 0,5  [c.114]

Встречаются сложные соединения, в которых отдельные соединяемые детали под действием внешней нагрузки не разгружаются, а дополнительно нагружаются, Kate и иинты (см. рис. 7.24, б). Обозначим податливость этих деталей Л в отличие от податливости остальных разгружаемых соединяемых деталей А,др, Тогда формула для коэффициента основной нагрузки (согласно условию совместности упругих перемещений) обобщается, т. е.  [c.115]


При наличии зазоров по среднему диаметру уменьшается сечение витков, увеличивается их податливость, распределение нагрузки по виткам резьбы становится более равномерным при зазорах по среднему, внутреннему н наружному диаметрам устраняется заклинивание витков, уменьшается трение между ними, появляется возможность комг.еисацин перекосов резьбы, ч ю также способствует более равномерному распределению нагрузки между ними и сгшжает нагрузку на первый и второй рабочие biitkh болтов. Циклическая долговечность таких соединении значительно выше [21 ).  [c.291]

Одним из способов повышения прочности болтового соединения при переменных нагрузках является применение болтов с высокой упругой податливостью, а следовательно, и динамической прочностью. С этой целью диаметр стержня болта иногда у меньшают до 0,8 ] (см. рис. 3.23, а).  [c.293]

Упругие звенья соединяются кинематическими парами в кинематическую цепь, обладающую упругими свойствами. Поэтому вводят понятие жесткости механизма, под которым подразумевают силу или момент силы, приложенные к вхоОному звену и вызывающие его единичное линейное или угловое перемеи ение. Жесткость механизма зависит от структурной и конструктивной схемы, жесткостей его звеньев, от вида кинематических пар, соединяющих звенья, и упругих свойств их элементов. Податливость механизма, состоящего из п звеньев, последовательно соединенных р кинематическими парами, равна сумме податливостей его звеньев и кинематических пар Х с  [c.295]

Рассмотрим определение жесткости зубчатого передаточного механизма (рис. 23.3). При зафиксированном положении звена 4 и приложении к колесу / момента М из-за деформации всех звеньев и пар этой кинематической цепи оно повернется на угол ф. Тогда жесткость механизма составит См = М/ф. Определяя угловые деформации (податливости) каждого из упругих соединений и приводя их к колесу 1, получтш  [c.295]

Для сварных соединений с косой прослойкой (рис. 1.7, г) вводится понятие поперечной податливости соединяемых 1)ассматриваемой прослойкой элементов конструкции. Существуют две основные схемы нагружения (рис. 1.8). Первая, допускающая относительное смещение соединяемых элементов Т в поперечном направлении, условно названа мягкой . Она реализуется при нагружении листовых конструкций с небольшой поперечной жесткостью, а также в ряде других случаев — например, при испытании образцов с рассматриваемой прослойкой, когда нагружение осуществляется через шарниры. Вторая схема — жесткая , реа-ли.зуется при отсутствии поперечной податливости элементов Т — в кольцевых (сварных и паяных) стыках оболочек.  [c.21]

Следует отметить, что в ряде случаев в связи с недостаточной кольцевой жесткостью констру кций в последних реализуется схема нагружения, которая является промежуточной между мягкой и жесткой схемой нагружения. Это в первую очередь отно-стится к тонкостенным конструкциям протяженных размеров, имеющим недостаточно большую жесткость. Дчя данного случая достоверная оценка механических характеристик сварных соединений с наклонной мягкой прослойкой может быть получена путем испытания вырезаемых образцов в контейнере с подпружиненными стенками, обеспечивающими поперечные смещения соединяемых элементов в процессе нагружения образцов, соответствующие податливости оболочковой конструкции /110/. Данный контейнер (рис. 3.42) включает в себя накладные пластины У. плотное прилегание которых к образцу, вырезаемому из оболочки и имеющему огфе-деленную кривизну поверхноста, осуществляется за счет вкладыщей 2, поджимаемых к образцу подпружиненными болтами 3. Форма вкладыщей подбирается в зависимости от кривизны поверхности оболочковых конструкций.  [c.161]


Смотреть страницы где упоминается термин Соединение Податливость : [c.121]    [c.348]    [c.221]    [c.162]    [c.176]    [c.107]    [c.281]    [c.287]    [c.289]    [c.297]    [c.158]    [c.171]    [c.101]    [c.520]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.348 ]



ПОИСК



Коэффициент податливости прокладки во фланцевом соединении

Коэффициент податливости промежуточных деталей в резьбовом соединении

Коэффициент податливости соединении

Податливость

Податливость валов фланцевых соединений

Податливость — Экспериментальное фланцевых соединений

Соединения болтовые 58 — Методы повышения податливости

Соединения фланцевые - Податливость

Фланцевые соединения — Коэффициенты податливости — Определение

Фланцевые соединения — Податливост



© 2025 Mash-xxl.info Реклама на сайте