Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ресурс детали предельный — Определение

Определение допустимых и предельных износов деталей можно рассмотреть на примере сопряжения деталей с подвижной посадкой, приняв при этом, что изменение износа и изменение значения зазора на всем протяжении нормальной работы деталей протекает по линейной зависимости (рис. 1.13). Допустимые износы деталей 6/]д, и допустимое значение их зазора в сопряжении 5д при ремонте, как показано на рис. 1.13, определяются межремонтным ресурсом в таком значении, чтобы остаточный ресурс деталей с износом был бы равным или большим межремонтного ресурса, установленного для данного вида ремонта. При обнаружении некоторого превышения допустимых при ремонте износов и зазоров в сопряжениях деталей следует считать такие детали предельно изношенными и выбраковывать их в процессе ремонта несмотря на то, что в ряде случаев эти детали могут располагать еще существенным ресурсом.  [c.30]


Основные показатели долговечности деталей ресурс — наработка изделия от определенного момента времени до наступления предельного состояния, оговоренного в технической документации. Различают ресурс до первого ремонта, межремонтный ресурс, назначенный ресурс. Ресурс рекомендуется определять по площади подынтегральной кривой износостойкости р х) (рис. 10.3, а)  [c.203]

Основы надежности закладываются конструктором в содружестве с технологом при проектировании. Заданная надежность обеспечивается в процессе производства применением прогрессивной технологии. В эксплуатации заданная функция надежности реализуется выполнением всех правил эксплуатации. Надежность изделия тесно связана с его долговечностью. Эффективных мер повышения долговечности много, в их числе закалка стальных деталей при нагреве т. в. ч., дающая возможность увеличить износостойкость зубчатых передач в 2—4 раза хромирование трущихся деталей дает возможность увеличивать срок службы по износу в 3—5 раз и др. Хорошая система смазки является необходимым условием обеспечения надежности и долговечности машин. Широкое применение в машиностроении т. в. ч. для упрочнения деталей машин с целью повышения их ресурса объясняется многими их преимуществами по сравнению с другими видами термической обработки деталей. Однако реализовать эти преимущества возможно только при условии правильного установления параметров закалки. Важнейшими из них являются глубина закалки х , твердость HR , зона перехода закаленной части детали к незакаленной, частота тока и скорость процесса упрочнения. Теоретически глубина упрочнения трущейся детали должна равняться предельному допуску ее износа. Однако практически при ее определении следует учитывать условия работы детали, ее геометрические размеры и материал. Опыт применения т. в. ч. показывает, что при невыполнении этих условий закалка при индукционном нагреве приводит к отрицательным результатам. В тех случаях, когда зона перехода закаленной части детали к незакаленной совпадает с наиболее опасным сечением и местом концентрации напряжений, в этих зонах первоначально возможно появление микротрещин, а затем их развитие под действием знакопеременных нагрузок и усталостный излом. Аналогичные результаты могут быть и при недостаточной глубине закаленного слоя.  [c.206]

Следовательно, ни в пределах заданного ресурса конструкции, ни тем более при продлении ее ресурса невозможно обеспечить безопасную эксплуатацию без учета факта появления и развития усталостных трещин. Именно поэтому в практику введен принцип конструирования отдельных деталей и конструкции в целом по безопасному повреждению [2-4]. В ряде мест конструкции допускаются усталостные трещины. Их размер определяется предельной несущей способностью детали и всего узла. Существование трещины в такой ситуации не является браковочным признаком для замены детали. На первый план выходит представление о длительности последующего, после обнаружения, роста трещины в эксплуатации до критических размеров. Получить такую информацию наиболее достоверно можно только на основе непосредственного анализа скорости роста трещины в эксплуатации и на основе использования подходов механики разрушения к определению предельного состояния тел с трещинами.  [c.18]


В процессе регулярного технического обслуживания параметры технического состояния поддерживаются в заданных пределах, однако из-за изнашивания деталей, поломок и других причин ресурс автомобиля (агрегата, механизма) расходуется и в определенный момент автомобиль уже не может нормально эксплуатироваться, т. е. наступает такое предельное его состояние, которое не может быть устранено профилактическими методами ТО, а требует восстановления утраченной работоспособности — ремонта.  [c.52]

Централизованному восстановлению в условиях высокой концентрации производства подлежат наиболее изношенные и поврежденные дефицитные детали распространенных моделей машин с высокой плотностью распределения их в рассматриваемом регионе. Потребность в этих деталях при эксплуатации и ремонте техники особенно велика. Наибольшая эффективность централизованного восстановления деталей определенной номенклатуры достигается созданием специализированного производства для них. Для этих деталей характерны значительные затраты на замену их в эксплуатации и малые себестоимость восстановления и стоимость перевозки. Особенно важно организовать высококачественное восстановление на специализированном производстве корпусных и основных деталей, срок службы которых до предельного состояния или отказа определяет-послеремонтные ресурсы агрегатов.  [c.622]

Под действием переменных напряжений в деталях механизмов и металлоконструкций ПТМ происходит постепенное накопление повреждений. Этот процесс называется усталостью, а способность деталей сопротивляться усталости — циклической прочностью или выносливостью. В начальной стадии накопления циклических повреждений происходят пластические деформации отдельных кристаллов, из которых состоит металл. Эти пластические деформации вызывают перераспределение напряжений, и на поверхности ряда кристаллов возникают линии сдвига. Пластическое деформирование сопровождается упрочнением отдельных зон кристаллов и одновременно разрыхлением структуры в области внутрикристаллических дефектов. Под действием переменных напряжений, превышающих определенный уровень, начинают образовываться из линий сдвига микротрещины. Развиваясь, микротрещины переходят в макротрещины. Последние приводят к уменьшению прочностного сечения детали, и после того как размер трещины достигает предельного значения, наступает хрупкое разрушение детали. Таким образом, процесс усталостного разрушения можно разделить на две стадии [27]. Первая стадия — до начала образования макротрещины, вторая — от момента ее образования до разрушения детали. В настоящее время еще нет достаточно апробированных общих оценок закономерностей распространения трещин в деталях ПТМ сложной конфигурации. В связи с этим расчеты циклической прочности как до образования макротрещин, так и до полного разрушения носят идентичный характер [20]. Известно, что пределы выносливости, определенные по условию образования трещины и по условию оконча тельного разрушения, совпадают при коэффициентах концентрации аа < 2 -Ь 3. При высоких коэффициентах концентрации количество циклов, при которых происходит развитие макротрещины с момента ее образования до разрушения сечения, составляет 70—80 % от общего ресурса детали. Развитие усталостной трещины происходит в результате циклических деформаций в области вершины трещины. Установлено, что в общем случае распространение макротрещины от появления до полного разрушения детали можно разделить на три этапа [27], Первый этап характеризуется малой скоростью распространения трещины вдоль полос скольжения. На втором (основном) этапе трещина растет с примерно постоянной скоростью. На третьем этапе, когда трещина имеет уже большие размеры, скорость роста увеличивается и происходит мгновенное хрупкое разрушение (долом) детали. В то же время экспериментальные и теоретические исследования так же, как и эксплуатационные наблюдения, свидетельствуют о том, что не всегда появление трещины усталости приводит к разрушению детали (образца) [27]. В ряде случаев возникают нераспространяющиеся трещины или трещины с весьма малой скоростью роста. Очевидно, что разработка и использование возможностей уменьшения  [c.121]


Ряд деталей и образуемые ими сопряжения в узлах и агрегатах являются основными (ресурсными), в связи с чем предельный износ этих деталей характеризует одновременно и предельное состояние сборочных единиц тракторов. Поэтому при ремонте тракторов допустимый износ от предельного его значения у основных деталей нормируется необходимым запасом технического ресурса, который должен соответствовать межремонтному ресурсу, установленному технической документацией для определенного вида ремонта узла, агрегата и в целом трактора.  [c.30]

Описанные методы диагностики позволяют с большей или меньшей точностью прогнозировать работоспособность двигателя с момента диагноза. Остаточный ресурс двигателя может быть достаточно просто определен при известных начальных и предельных значениях параметров состояния основных деталей и при измерении диагностического параметра в момент прогнозирования. За начальное значение параметра принимают среднее статистическое, а за предельное — указанное в технических условиях. В этом случае прогнозирование ведется по одному определению текущего значения диагностического параметра. Однако этот метод не учитывает индивидуальные особенности двигателя и условия его эксплуатации и дает большую погрешность прогноза (до 60%). Более достоверно прогнозирование, основанное на использовании многократного диагноза, поскольку в качестве начального значения параметра берется конкретное значение, соответствующее первому диагнозу, а многократность диагноза позволяет выявить и учесть зависимость диагностических параметров от величины использованного ресурса для конкретных условий эксплуатации.  [c.211]

Расчет деталей иа прочность заключается в определении их запаса прочности в предельном состоянии по напряжениям. Такое состояние воспроизводится пропорциональным увеличением на-пря/кений по всему спектру или пропорциональным уменьшением ординат кривой усталости с возможным понижением сопротивления усталости материала детали по технологическим или эксплуатационным причинам. Возможен также переход к предельному состоянию по долговечности путем пропорционального изменения количества наработанных циклов по всему спектру напряжений при их фиксированных значениях. При изменении величины наработки (ресурса) детали по числу циклов Л/ и амплитуд напряжений ст запас прочности определяется в предположении, что переход к предельному состоянию на различных стадиях использования ресурса производится также посредством пропорционального увеличения напряжений по всему спектру.  [c.174]

Задача теплового расчета сводится к определению превышения температуры в отдельных частях СММ при заданных тепловых потоках и тепловых сопротивлениях элементов конструкции на номинальном режиме работы СММ [8, 16, 20, 27]. Температура обмотки возбуждения и других деталей механизма должна быть близкой к максимально допустимой. По нагревостойкости изоляционные материалы в соответствии с ГОСТ 8865—70 разделяются на классы с различной допустимой температурой при длительном режиме работы (см. гл. 5). Превышение допустимых температур резко снижает срок службы изоляции. Для машин с ограниченным ресурсом (до нескольких сотен часов службы) допустимые температуры могут быть повышены до значений для класса А — 155° С, В — 175° С, F — 200° С, Я — 220° С. При ограничении срока службы можно принять более высокие допустимые температуры для смазки подшипниковых узлов. Для консистентной смазки и ресурса нескольких тысяч часов допустима температура до 150° С для жидкой принудительной смазки и ресурса несколько тысяч часов — до 200° С. Температура самой горячей точки механизма должна быть не выше принятой допустимой. Предельно допустимые средние перегревы при длительном режиме работы и температуре окружающего воздуха 40° С должны иметь величины, приведенные в табл. 1.2.  [c.124]

Для точного определения 4р необходимо наличие математических моделей отказов изделий. Имеется математический аппарат для целого ряда моделей отказов мгновенных, накапливающихся, с релаксацией, при действии нескольких независимых причин и т. д. Однако, как показали исследования, характеристика отказа, как правило, оказывается весьма сложной, а знание физической природы относительным. Поэтому модель возникновения отказов всегда оказывается в той или иной степени приближенной. Оценка /ср резко отличается для различных распределений. Как показали исследования, для правильного выбора определенного распределения необходимы затраты очень большого времени, анализа физической картины отказа, учета предельных состояний системы и конкретных потребностей решаемой задачи. Так, например, законы распределения отказов поршней, втулок цилиндра и вкладышей на новых тепловозных дизелях и на прошедших различные виды ремонта оказались различными t p отличалось до 5 раз). Кроме того, /ср сильно зависит от качества применяемой смазки, последних конструктивных улучшений узла и др. Долговечность деталей и узлов дизеля определяют гамма-процентным ресурсом. Гамма-процентный ресурс р [1у) — это наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью (у) процентов (заданный процент объектов (у) неразрушения). Этот показатель имеет преимущество перед /ср поскольку легко определяется при незавершенных испытаниях (большинство испытываемых изделий не доводится до разрушения) и является наиболее удобной характеристикой случаев раннего разрушения изделий, не достигающих среднего ресурса. Использование р (/ ) облегчает определение надежности узлов и деталей, моторесурс которых исчисляется сотнями тысяч километров, упрощает нормирование назначенного гарантийного ресурса, стандартизацию соответствующих показателей и сопоставление различных типов и модификаций узлов дизелей, р (/у) легко определяется на основе построения кривой убыли (или вероятности безотказной работы). Если,  [c.317]


Сложные. циклы нагрева и нагружения деталей при расчете долговечности разделяют на участки, на каждом из которых накапливается статическое или усталоетное повреждение. Если цикл повторяется и нагружение не является случайным (например, существует типичный эксплуатационный цикл, в котором характер нагружения деталей машины всегда одинаков), то происходит пропорциональное нагружение материала деталей, при котором соотношение долей статического и циклического повреждений остается неизменным за весь ресурс работы [23]. Это позволяет использовать для анализа предельного состояния и определения запаса прочности представления о поверхности термоциклического нагружения (рис. 98). Для заданных условий нагружения (размаха деформаций Дед, длительности действия нагрузки Тд и ресурса долговечности Л/д) состояние детали характеризуется положением точки А относительно предельной поверхности разрушения. Длительность переходных процессов в цикле здесь исключена из рассмотрения для упрощения анализа, поэтому Тд=ТвЛ д, где Тв — длительность выдержки в цикле.  [c.170]

Метод эталонных, (нормированных) модулей, наиболее широко используемый в настояш ее время, пригоден для всех видов оборудования. Основан на сравнении экспериментально определенных и расчетных (в частности, полученных на математических моделях) численных значений параметров и показателей качества (мощности, КПД, усилий, крутящих моментов, давлений, ускорений, подачи, амплитуд вибраций и т. п.) с их паспортными данными и нормами технических условий. Преимуществом метода является возможность разностороннега использования полученной информации (для проверки деталей на прочность и износостойкость, прогнозирования их ресурса, определения затрат энергии и т. п). С помощью модулей кинематических и силовых параметров могут быть рассчитаны квалиметрические показатели, используемые для оценки качества механизмов и при диагностировании. Реализация метода эталонных модулей, основанная на применении предельных значений одного или нескольких модулей и метода ветвей, при постановке диагноза не требует сложной аппаратуры и программного обеспечения.  [c.13]

Интервал времени, у которого началом отсчета является пуск после планово-предупредительного ремонта, а окончанием - наработка, при которой вероятность безотказной работы достигает 0,85 при относительной погрешности, не превышающей 5%, можно считать ресурсом между смежными планово-предупредительн1ши ремонтами. Из этого не следует, что при P[t) 0,8 0,05 нужна замена тех однотипных деталей, часть из которых повредилась и явилась причиной отказа. При этом во избежание перебраковки должна быть проведена тщательная диагностика. Ресурс, определенный статистико-вероятностным методом, не является предельным. Предельный ресурс определяется на основании прямых измерений, выполняющихся с помощью различных измерительных инструментов и приборов. Возможно несколько подходов к оценке предельного состояния. Однако план решения этой задачи при всех подходах однозначен. На первом этапе определяются даты проведения диагностики, связанной с признаками старения. Это могут быть длительные наработки времени, близкие к назначенному сроку службы котлов остаточная деформация, близкая к предельно допустимой или превышающая ее появление отдулин, свищей и других аномалий, присущих либо длительным наработкам, либо резко отрицательным событиям (упус-кам воды, резким выбегам температуры выше 480 С, пускам с нарушением условий нормального разогрева деталей, превышениям давления выше допустимых по НТД значений, пропариваниям, видимым растрескиваниям металла и др.).  [c.170]

При оценке прочности и ресурса элементов конструкций, работающих в условиях малоциклового нагружения при переменных температурах и сложнонапряженном состоянии, возникают две связанные задачи определение напряженно-деформированного состояния элементов конструкций при работе материала максимально нагруженных зон за пределами упругости, когда развиты упру-гонластические деформации и деформации ползучести, и на базе полученной информации оценка запасов прочности и долговечности при малоцикловом неизотермическом нагружении. Характер протекания процесса деформирования за пределами упругости и циклические деформации, определяющие формирование предельного состояния материала, зависят от режима термосилового воздействия на деталь и параметров термомеханической нагруженности максимальная температура, градиент температур, длительность и форма термического и силового циклов нагружения и др.), а также сочетания нестационарных режимов нагружения в период эксплуатации изделия.  [c.11]

К основным показателям долговечности относятся средний ресурс или срок службы гамма-процентный ресурс (срок службы) вероятность достижения предельного состояния. При определении надежности эти показатели обычно рассматриваются как для отдельных деталей, так и для агрегатов и автомобилей. Для деталей указанные показатели определяются при проведении их ремонта или реже — при списании деталей. Для агрегатов определяйтся ресурсы до ремонта и между ремонтами. Для автомобилей, кроме ресурсов до ремонта, определяются и нормируются, как правило, сроки службы до их списания.  [c.39]

Куполообразные детали типа днищ (особенно при больших размерах) часто изготовляют формовкой эластичным, газовым или жидкостным инструментом, что позволяет уменьшить стоимость последнего. Нагрузка может прикладываться статически или импульсно. Разрушение заготовки по достижении предельной высоты чаще всего происходит вблизи полюса. Причиной этого является исчерпывание ресурса пластичности в этой зоне, в то время как в остальных частях (особенно периферийных) ресурс пластичности остается не исчерпанным. Поэтому при обычных вариантах штамповки резиной, полиуретаном, жидкостью или газом деталь имеет глубину, меньшую максимально возможной. Чтобы разгрузить полюсную часть и догрузить остальные зоны, давление инструмента на заготовку должно быть минимальным у оси симметрии и увеличиваться в направлении периферии. Такое изменение давления обеспечивает устройство для формовки жидкостью переменного давления (рис. 2.31), которое состоит из корпуса 4 и прижимного кольца 8, прижимающего заготовку 2 к матрице. Внутри корпуса располагается несколько перегородок 1, давлением жидкости прижимаемых к вогнутой поверхности заготовки. Каждая пара смежных перегородок и заготовка образуют герметичную полость, в которую насосом подается жидкость. В каждой полости создается определенное давление — дз, Яа и т. д., причем 94>9з>92>9ь Поэтому, чем дальше данное сечение расположено от оси, тем большее давление на него действует. Это позволяет равномерно дeфopмиpoвatь заготовку по всей площади. Для обеспечения герметичности полостей перегородки снабжены кольцевыми уплотнениями, а деформирование начийают с периферийной полости, последовательно подавая жидкость под  [c.73]

При анализе технологичности конструкций необходимо не только выбрать материал, но и определить эффективные способы изготовления деталей машин в соответствии с заданной надежностью. При этом следует предусмотреть вероятные испьлания на надежность как отдельных деталей, так и разрабатываемой конструкции с тем, чтобы определить ресурс и равнопрочность деталей машин. При определении предельного износа следует иметь в виду, что возрастание интенсивноеги изнашивания крайне нежелательно, поэтому необходимо устранять факторы, интенсифицирующие процесс износа. Очевидно, что с этой целью должен быть использован весь комплекс конструктивных и эксплуатационных средств.  [c.22]



Смотреть страницы где упоминается термин Ресурс детали предельный — Определение : [c.173]    [c.50]    [c.82]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.182 ]



ПОИСК



Деталь определение

Деталь предельное

Предельные Определение

Ресурс

Ресурс Определение



© 2025 Mash-xxl.info Реклама на сайте