Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Трещины возникновение и развитие

Существенно влияют на возникновение и развитие усталостных трещин дефекты внутреннего строения материала (внутренние трещины, шлаковые включения и т. п.) и дефекты обработки поверхности детали (царапины, следы от резца или шлифовального камня и т. п.). Процесс постепенного накопления повреждений материала под действием переменных напряжений, приводящий к изменению свойств, образованию трещин, их развитию и разрушению, называют усталостью, а разрушение вследствие распространения усталостной трещины — усталостным разрушением. Свойство материала противостоять усталости называют сопротивлением усталости.  [c.307]


Несмотря на важность подобной информации следует признать наличие субъективных факторов (особенно при визуальном осмотре), снижающих достоверность диагностирования. Таким образом, актуальной остается задача поиска методов и средств определения участков, в наибольшей степени подверженных риску возникновения и развития трещин и трещиноподобных дефектов (потенциально опасных участков).  [c.210]

В силу конструктивных особенностей обследуемых объектов, больших поверхностей контакта металла с рабочей коррозионно-активной средой разработка методов и средств определения участков, в наибольшей степени подверженных риску возникновения и развития трещин и трещиноподобных дефектов, является весьма актуальной. Образование дефектов типа трещина происходит в местах концентрации напряжений места с резким изменением сечения элементов, таких как сварные соединения, неплавное изменение размеров конструктивных элементов, места приварки штуцеров и накладок, ребер жесткости.  [c.335]

Усталостное разрушение. Надо рассказать учащимся о возникновении и развитии усталостных трещин, обратить внимание на две зоны усталостного излома, проиллюстрировав их крупными фотографиями или диапозитивами и схематическим рисунком на доске. Следует подробно разъяснить условность терминов усталость , усталостное разрушение , привести некоторые исторические сведения о возникновении этих понятий, но в то же время подчеркнуть, что они настолько общеприняты и широко распространены, что их применение оправданно и необходимо.  [c.172]

Практика эксплуатации реальных деталей показывает, что из-за концентрации напряжений, неточности сборки, влияния среды и т. п. стадия разрушения, состоящая из возникновения и развития трещины, начинается задолго до исчерпания несущей способности детали. При этом прочность материала детали не реализуется. В результате постепенного роста трещины длительность процесса разрушения от начала до полного разрушения занимает 90 % времени жизни детали и более. Вот почему практически интересно не столько наличие трещины, сколько скорость ее роста в lex или иных условиях. В связи с этим основная задача механики разрушения — изучение прочности тел с трещинами, геометрии трещин, а также разработка критериев несущей способности элементов конструкций с трещинами.  [c.728]


Процессы возникновения и развития усталостных трещин пока полностью неясны. Для их объяснения различными авторами предложено несколько гипотез, часто взаимно дополняющих друг друга.  [c.331]

Наиболее характерным пассивным методом, использующим бегущие волны, является акустико-эмиссионный метод (рис. 21, е). При акустической эмиссии упругие волны излучаются самим материалом в результате внутренней динамической локальной перестройки его структуры. Такие явления, как возникновение и развитие трещин, аллотропические превращения, движение скоплений дислокаций, — наиболее характерные источники акустической эмиссии. Контактирующие с изделием пьезопреобразователи принимают упругие волны и позволяют установить место их источника (дефекта).  [c.204]

Процессы с запаздыванием начала повреждения характерны для усталостных разрушений. Так, например, исследование возникновения и развития трещин показало, что в начальный период работы конструкции они не обнаруживаются (рис. 26, ж), а затем развиваются по экспоненциальному закону  [c.107]

В условиях асимметричного циклического растяжения, особенно в условиях малоциклового растяжения (/ = 0), когда за счет интенсивной циклической ползучести развивается шейка, общепринято считать, что развитие разрушения происходит во внутренних объемах металла в области действия объемного напряженного состояния. В то же время в подавляющем большинстве случаев циклического нагружения, особенно при жестком нагружении, возникновение и развитие трещин происходит в поверхностных слоях. В связи с этим циклическая долговечность определяется сопротивляемостью металла возникновению трещин  [c.187]

Схематизация ПЦН двигателя заключается в удалении из него всех выдержек диска при постоянной нагрузке и части режимов работы двигателя, влиянием которых можно пренебречь. Полетный цикл изменения напряжений представляется в виде суммы нескольких циклов треугольной формы, в начале и в конце которых уровень напряжений принимается одинаковым (рис. 1.6а). Анализ НДС при повторении каждого типа циклов, выделенных из ПЦН, проводят раздельно без учета их чередования при дальнейшем суммировании повреждений. Возможен вариант схематизации ПЦН [50], как это показано на рис. 1.66, когда полетный цикл представляется в виде двух синусоидальных циклов нагружения. Более сложное представление ПЦН с учетом многократного повторения номинального режима работы двигателя в полете, как это показано на рис. 1.6б, позволяет более полно характеризовать накопление повреждений в дисках [51]. В случае наиболее полного представления полетного цикла нагружения учитывается выдержка материала при его работе в составе двигателя (рис. 1.6г), а также включаются в рассмотрение циклы переходных режимов работы двигателя [52]. В последнем случае рассматривается ситуация, которая более характерна для военной техники. Указанные подходы к схематизации нагрузок относятся только к расчету дисков на усталостную долговечность без учета возможного возникновения и развития усталостных трещин.  [c.40]

Итак, необходимо разделять представления о причине возникновения и развития трещины в материале детали, о причине разрушения детали и о причине разрушения конструктивного узла.  [c.80]

Характерным признаком разрушения при действии постоянной статической нагрузки является наличие множества трещин, число которых может быть различным. Число образующихся трещин зависит от сопротивления материала их возникновению и развитию. Чем меньше сопротивление образованию трещин, тем число их, очевидно, больше, вместе с тем увеличение скорости развития разрушения приводит к уменьшению возможности образования новых трещин. Различное сопротивление материала возникновению и развитию трещин обусловливает разный характер растрескивания.  [c.22]

Наличие коррозионно-активной среды при испытаниях приводит к изменению характера возникновения и развития разрушения. Вместо одной трещины, развивающейся на воздухе из вершины концентратора (переход от шва к основному металлу) при испытании в среде возникает и развивается система трещин (как это наблюдается в реальных условиях эксплуатации), однако разрушение происходит, как и при испытаниях на воздухе по трещине, зародившейся по линии перехода от шва к металлу.  [c.231]


Хром. Данные о его влиянии на КР аустенитных коррозионно-стойких сталей противоречивы. По-видимому, это связано с тем, что увеличение содержания хрома приводит, с одной стороны, к улучшению пассивирующих свойств, а следовательно, к повыщению стойкости к КР, с другой — к повышению электрохимической активности сталей, а также к снижению энергии дефектов упаковки к плоскостному расположению дислокаций, способствующим более быстрому возникновению и развитию трещин КР.  [c.72]

Изучение механики усталостных трещин началось после внедрения в практику исследований растрового электронного микроскопа, разрешающая способность которого позволяет четко разграничить стадии возникновения и развития трещин начиная с момента излома микроструктуры. На этом микроскопе удается наблюдать начало процесса концентрации рассеянных микротрещин и перерастания их в одну конечную трещину критического размера, которая под воздействием приложенных усилий после медленного роста переходит в катастрофическое состояние. Однако такой процесс не носит внезапного характера, он состоит из последовательного объединения соседних микротрещин, уменьшения числа микротрещин, размер которых увеличивается, и ускорения роста размеров одной из трещин. Такая трещина называется конечной, и именно она приводит к усталостному разрушению. Поэтому полное число циклов до разрушения составит  [c.60]

В идеальной атомной решетке, свободной от приложенных или остаточных напряжений, атомы находятся в равновесном состоянии под действием внутренних сил. Однако реальная атомная решетка металлов геометрически несовершенна из-за наличия в ней местных дислокаций. Приложенные внешние силы приводят к перемещению атомов в новые положения, что вызывает пластическую деформацию и наклеп. Увеличение пластической деформации за предел текучести приводит к возникновению и развитию трещин. Масло, попадаемое в трещину, играет роль гидравлического клина, ускоряющего процесс развития трещины.  [c.68]

Раньше считалось, что усталостная трещина вызывает весьма резкую концентрацию напряжений и неизбежно приводит к разрушению, если силовые воздействия на образец или деталь остаются неизменными. Однако к 40-м годам были известны работы, в которых исследователи отмечали существование усталостных трещин при напряжениях ниже предела выносливости. Так, с целью исследования условий возникновения и развития трещин, постоянно обнаруживаемых на практике в подступичных частях железнодорожных осей, были проведены испытания на усталость крупных моделей таких осей. Испытывали на изгиб с вращением консольные модели диаметром 51 мм Из низкоуглеродистой никелевой (0,24 % С 3,10 % Ni 0,02 /о S 0,03% Р Ов = 667 МПа 0 = 485 МПа 6 = 30% г з = 70,6 % — сталь А) и углеродистой (0,49% С 0,06 /о Ni 0,035% S 0,017% Р 0,77 % Мп Ов = 624 МПа Qt = 336 МПа 6 = 32 % 1 з = 48,5 % — сталь Б) сталей. На один конец модели напрессовывали литой колесный центр диаметром 159 мм и толщиной 35 мм, имитирующий посадку колеса на ось.  [c.8]

В этих экспериментах для всех значений радиуса при вершине надреза, кроме г=1,25 мм, было установлено, что возникновение нераспространяющихся усталостных трещин возможно уже при симметричном цикле напряжений. В связи с этим была построена общая зависимость пределов выносливости по разрушению и по трещинообразованию при симметричном цикле напряжения-сжатия от теоретического коэффициента концентрации напряжений (рис. 5). Сначала определяли предел выносливости гладкого образца из исследуемой стали (о-1 = 204 МПа). Далее, путем деления этого предела на теоретический коэффициент концентрации напряжений, была получена кривая, которой теоретически должно следовать изменение предела выносливости по разрушению с увеличением концентрации напряжений (кривая 5). Однако экспериментальные результаты показали иное. В области высокой концентрации напряжений пределы выносливости по разрушению оказались независящими от остроты концентратора. Анализ возникновения и развития усталостных трещин в зонах над-  [c.14]

Соотношение напряжений, необходимых для возникновения и развития трещины. В одной из первых работ, посвященных изучению механизма возникновения нераспространяющихся  [c.20]

Изменение поля напряжений у вершины усталостной трещины при нагружении по отнулевому циклу сжатия. При знакопостоянном цикле напряжений сжатия развитие трещины в концентраторах напряжений происходит в полуцикле разгрузки под действием образовавшихся в полуцикле нагружения остаточных напряжений растяжения. Если сжимающие напряжения от внешнего нагружения превосходят предел текучести, образуя пластически деформированную зону у вершины концентратора, то при разгрузке в этой зоне возникают остаточные напряжения растяжения. В связи с этим при нагружении образца или детали по знакопостоянному циклу сжатия в вершине концентратора реально осуществляется знакопеременный цикл напряжений, сжимающая часть которого определяется внешней нагрузкой, а растягивающая — остаточными напряжениями. При возникновении и развитии усталостной трещины, как показал Л. Хаббард, пластическая зона у вершины концентратора не меняется, а остаточные напряжения растяжения у вершины трещины уменьшаются номере ее роста. Таким образом, амплитуда действительного цикла напряжений в вершине трещины уменьшается, вызывая замедление скорости ее роста и остановку. Так, при исследовании развития усталостных трещин в алюминиевом сплаве с высоким пределом текучести в условиях сжатия на плоских образцах с центральным отверстием было показано, что с увеличением длины трещины по мере прохождения ее через пластическую зону скорость роста трещины непрерывно уменьшается.  [c.26]


Результаты, полученные при исследовании влияния поверхностного пластического деформирования на возникновение и развитие усталостных трещин в сталях (см, гл. 6), также хорошо согласуются с приведенными теоретическими представлениями. Остаточные напряжения сжатия, образовавшиеся в результате наклепа в области вершины концентратора, приводят к резкому увеличению пределов выносливости по разрушению исследованных материалов, практически мало изменив при этом пределы выносливости по трещинообразованию. Если рассматривать эти остаточные напряжения как среднее напряжение цикла, то можно утверждать, что причиной образования широкой области нераспространяющихся трещин в этом случае было существенное изменение коэффициента асимметрии цикла от —1 до —ОО.  [c.55]

Основными недостатками полученных результатов являются, во-первых, отсутствие информации о кинетике накопления усталостного повреждения в металлах на стадии зарождения усталостной трещины, что исключает возможность прогнозировать момент возникновения макроскопической усталостной трещины с учетом структурных особенностей сплавов и влияния на процесс накопления повреждения эксплуатационных и других факторов во-вторых, отсутствие четкого разграничения стадий возникновения и развития усталостных трещин, особенно в тех случаях, когда стадия развития усталостных трещин составляет значительную часть общей долговечности в-третьих, недостаточное внимание к исследованию критериев окончательного разрушения образцов и конструктивных элементов с усталостной трещиной при циклическом нагружении.  [c.3]

Однако в условиях эксплуатации деталей, в результате наличия надрезов, перекосов, влияния среды и т.п., стадия разрушения (т.е. возникновение и развитие трещины) появляется задолго до исчерпания несущей способности (до максимальной величины нагрузки, выдерживаемой деталью). При этом прочность материала (детали в идеализированных условиях) недоиспользуется или даже не используется вовсе. Длительность процесса разрушения (роста трещины) до полного разрушения занимает значительную часть жизни детали, доходя до 90% и выше. Главное - темп роста трещины, а не факт ее наличия. Поэтому для повышения прочности необязательно повышать среднее сопротивление отрыву - достаточно регулировать процесс появления и, в особенности, развития трещин. В конструкциях применяют различные препятствия, тормозящие развитие трещин и сигнализирующие об их появлении, а также дополнительные элементы конструкции, берущие на себя часть нагрузки при уменьшении жесткости от возникшей трещины. Необходимо развивать методы расчета, пути распространения трещины (траектории трещины), связи ее размеров с внешней нагрузкой и кинематические характеристики движения конца трещины.  [c.118]

При систематическом действии на тело переменных напряжений в местах их наибольшей концентрации могут возникнуть и )ззвиваться трещины, приводящие тело к хрупкому разрушению. Лроцесс возникновения и развития в материале тела трещин от действия переменных напряжений называется усталостью материала.  [c.417]

Подавляющее число деталей машин, оборудова [ия для добычи, транспорта, хранения и переработки нефти и газа в процессе эксплуатации подвергаются воздействию циклически изненяющихся нагрузок. Поэтому примерно 90% повреждений связано с возникновением и развитием усталостных трещин, которые.-создают предпосылки для крупного разрушения, и в этом одна из главных при шн их опасности.  [c.54]

Разрушения в эксплуатации редукторов вертолетов недопустимы, они могут быть связаны либо с перегрузкой вертолета в момент его столкновения с землей, либо с возникновением и развитием до критических размеров усталостных трещин. Во всех слз аях усталостные трещины в картерах были инициированы либо дефектами материала производственного происхождения, либо коррозионными повреждениями на значительную глубину. Нагруженность картера определяется общей нагруженностью редуктора и характеризуется низкоамплитудной вибрацией и низким уровнем максимального напряжения цикла. Поэтому протяженность зоны с усталостной трещиной на момент ее обнаружения или на момент окончательного разрушения картера по тем или иным причинам составляет несколько десятков миллиметров.  [c.665]

Испытания гидрофильтров (см. рис. 14.17) проводили путем их циклического нагружения внутренним давлением по отнулевому циклу с длительностью цикла 0,34 с. Предварительно осуществлялась перегрузка гидроцилиндров. Схема возникновения и развития трещин по резьбе в крышке гидроагрегата показана на рис. 14.26. В соответствии с техническими условиями каждый поступающий в эксплуатацию гидроагрегат подвергается гидроопрессовке (ГП) с уровнем создаваемого однократно внутреннего давления (медленный напуск гидрожидкости и снятие давления). Этот режим осуществляется путем создания внутреннего давления в 1,5 раза больше последующего, рабочего, эксплуатационного давления. Поэтому была проверена роль опрессовки в долговечности и живучести гидроафегата с его однократным перенапряжением не только в 1,5 раза, но и более.  [c.766]

Подавляющее большинство деталей машин, траиспортных и других конструкций в процессе службы претерпевает воздействие циклически изменяющихся нагрузок. Поэтому примерно 90% повреждений деталей связано с возникновением и развитием усталостных трещин. Трещины усталости создают предпосылки для хрупкого разрушения, и в этом одна из главных причин их опасности. Ни при каких других видах разрушения характеристики прочности не зависят от такого большого числа факторов, как при усталостном разрушении. Основными из них являются особенности материала и технологии изготовления конструкция деталей режим нагружения среда, контактирующая с деталью.  [c.7]

Магнитное сопротивление. Является обобщающей характеристикой, учитывающей магнитную проницаемость материала образца и его разрыхление, возникновение и развитие усталостных трещин [12. с. 121—1123]. По результатам измерений величины индуктивности катушки получены формулы для определения геометрических размеров усталостной трещины. Индуктивность катушки определялась на частоте 1000 Гц с помощью низкочастотного измерителя Е7-2 и автрматического моста Р-69,1 переменного тока с цифровым отсчетом и выходом на цифропечатающее устройство или перфоратор. Исследование магнитного сопротивления дает возможность в процессе испытания проследить стадии накопления усталостных повреждений, зафиксировать момент возникновения трещины и ха- рактер ее развития.  [c.42]

В металлическую ванную 1. заполненную влажным грунтом 2, вдавливались поочередно железобетонные образцы 3 и 4, на один из них одевались металлические кольца 5, электрически соединенные с арматурой образца 4. Через каждый образец пропускался одинаковой величины ток в течение 48 часов от выпрямительной установки 6. В результате эксперимента установлено следующее образец 3 полностью разваливался, а образец 4 не имел даже трещин, зато кольца 5 подвергались значительному разрушению. Опыт показал, что для возникновения и развития процесса электрокоррозии арматуры достаточно постоянного тока небольших величин, поэтому для ее защиты необходимо создать направленный отвод наведенных токов в землю. Стойкос-Л железобетона к электрокоррозии определяется электроизоляционными и электрохимическими свойствами соответственно бетона и арматуры.  [c.55]


Для бурения с поверхности технических скважин различного назначения (водоотливных, пульпопроводных, дегазационных, лесоспускных, для гидродинамического воздействия на пласт и др.) на угольных шахтах используют буровые установки типа УБВ-600 (А-50У). При работе такой установки воздействие знакопеременных нагрузок, ударов, вибрации может привести к возникновению и развитию усталостных трещин и отказам отдельных ее деталей (узлов), что небезопасно и влечет за собой простои.  [c.125]

Характер влияния различных факторов на зарождение трещин и их распространение в ряде случаев принципиально различается между собой [108]. Например, при усталостном разрушении во многих материалах сопротивление возникновению разрушения выше при мелком зерне, а сопротивление развитию разрушения повышается с укрупнением зерна. Такое явление наблюдалось, в частности, в литейных никельхромовых жаропрочных сплавах, в ряде алюминиевых сплавов и т. д. Существует мнение, что зарождение усталостной трещины в малой степени зависит от частоты приложения нагрузки, в то время как процесс распространения трещин зависит от частоты в гораздо большей степени [28]. При длительном высокотемпературном статическом нагружении существенно различие по характеристикам сопротивления возникновению и развитию разрушения между однотипными деформируемыми и литейными сплавами по первой характеристике литейные сплавы, как правило, значительно превосходят деформируемые, по второй — могут уступать.  [c.8]

В ряде случаев в типично усталостных изломах микрополоски группируются в колонии. Изломы повторно-статического нагружения имеют в этом отношении более однородное строение. Наблюдаемое ветвление трещины при высокочастотном нагружении и отсутствие, как правило, такого ветвления при низкочастотном нагружении согласуются с результатами исследования микростроения изломов [28]. Более глобальный характер разрушения при нагружении повторными малочастотными нагрузками по сравнению с высокочастотными, по-видимому, является одной из причин понижения сопротивления возникновению и развитию усталостной трещины.  [c.100]

Складки или рубцы могут представлять собой также траекторию единой трещины, меняющей свою ориентировку в процессе разрушения. Характерным является возникновеипе ступенек па изломе при изменении схемы приложения нагрузок в процессе развития разрушения, например переход от изгиба к кручению (рис. 146,6) и т. п. Следы слияния рядом развивающихся трещин располагаются вдоль направления разрушения, ступеньки другого происхождения направлены перпендикулярно направлению распространения разрушения. Изменение иаправлеиия разрушения часто наблюдается из-за резко пониженных свойств материала по второму направлению (менее нагруженному, чем направление, в котором образовалась начальная трещина) и сопровождается, как правило, резким изменением строения излома. Изменение направления разрушения и образование вследствие этого резкой ступеньки на изломе может наблюдаться при выходе трещины из области действия концентратора напряжений. Факт совпадения или несовпадения плоскости разрушения с плоскостью концентратора напряжения свидетельствует о степени влияния концентратора на возникновение и развитие разрушения.  [c.182]

Анализ возникновения и развития усталостных трещин в образцах с поперечными отверстиями при их испытании на кручение позволил выявить зону существования нераспространяю- щихся усталостных трещин. На рис. 40 приведена зависимость эффективного коэффициента концентрации напряжений от радиуса концентратора для образцов с различными отверстиями. В обоих случаях при радиусах отверстия меньще 0,5 мм в образцах были обнаружены нераспространяющиеся усталостные трещины, т. е. усталостное разрущение при радиусе поперечного отверстия г>0,5 мм определяется сопротивлением материала возникновению трещины, а при / <0,5 мм — сопротивлением ее развитию. Постоянство эффективного коэффициента концентрации напряжений в области существования нераспространяю-щихся усталостных трещин при кручении образцов с некруглыми отверстиями объясняется тем, что пределы выносливости этих образцов не зависят от радиуса концентратора. Это явление аналогично наблюдаемому при изгибе и осевом растяжении-сжатии.  [c.87]

Специальные исследования возникновения и развития усталостных трещин при асимметричных циклах напряжений со средними напряжениями сжатия были проведены на призматических образцах сечением 40x40 мм из стали 45 (рис. 42). Образцы имели концентраторы напряжений в виде уступа высотой в половину сечения (20 мм) с радиусами перехода к широкой части образца 0,75 и 5,0 мм. Теоретический коэффициент концентрации в галтельном переходе R = 0,75 такого образца при изгибе равен 3. Испытания проводили по схеме чистого изгиба в одной плоскости. Во время испытаний на боковой поверхности образца вели визуальные наблюдения за развитием трещины, появляющейся в зоне концентратора. Результаты испытаний, приведенные на рис. 42, показали, что при симметричном цикле нагружения пределы выносливости по трещинообразова-нию и разрушению совпадают (85 МПа). При испытаниях со средними сжимающими напряжениями в зоне концентратора появляются трещины, которые, распространившись на некоторую глубину в процессе дальнейших нагружений, не увеличиваются. Длина таких нераспро-страняющихся трещин была при определенном значении среднего напряжения цикла а тем больше, чем больше амплитуда цикла 0а.  [c.91]

Экспериментальные исследования влияния пониженных температур на характеристики возникновения и развития усталостных трещин X. Оущида проводил на мягких углеродистых сталях двух марок после раскисления (далее для простоты будем называть их стали А В), аустенитной коррозионностойкой закаленной стали (сталь Б) и высокопрочной стали в состоянии после прокатки (сталь Г) и после закалки с отпуском (сталь Д). Химический состав и механические характеристики при нормальной и пониженных температурах этих сталей приведены в табл. 16 и 17.  [c.101]

В обобщенном виде результаты исследований влияния ППД на возникновение и развитие усталостных трещин в сталях с различными механическими характеристиками приведены на рис. 62 в виде зависимостей пределов выносливости по трещинообразованию и разрушению от пределов прочности. Пределы выносливости по разрушению (прямая 1) для ненаклепанных образцов из большинства исследованных сталей оказались примерно постоянными и не зависящими от предела прочности этих сталей. Если принять во внимание, что для сталей существует хорошо подтвержденная экспериментально пропорциональная зависимость предела выносливости гладких образцов от предела прочности, то расположение прямой 1 параллельно оси  [c.150]

Были проведены специальные исследования возникновения и развития усталостных трещин в галтелях коленчатых валов из стали 20Г, которые испытывали на усталость при кручении. Диаметр шеек вала составлял 50 мм, а радиус галтели, которую упрочняли ППД путем обкатки роликом, был равен 2 мм. Предел выносливости этих валов без упрочнения, определенный при испытаниях по методу вверх — вниз , составил 110 МПа. Упрочнение галтелей повысило предел выносливости по разрушению этих валов примерно до 160 МПа. Анализ усталостных трещин, возникших в галтелях исследованных валов, прошедших базу испытаний 5-10 циклов нагружения при напряжениях, близких к пределам выносливости по разрушению, показал следующее. Для неупрочиенного вала характерно возникновение большого количества нераспространяющихся усталостных тре-шин, максимальная глубина которых составляет 7 мм. Типичное строение таких трещин в радиальном сечении, расположенном вблизи галтельного перехода неупрочиенного коленчатого вала, показано на рис. 65, а. После ППД уменьшается число и максимальная глубина нераспространяющихся усталостных трещин, возникающих в галтелях вала, типичное строение которых показано на рис. 65, б. Полученные результаты подтверждают вывод о том, что и при кручении эффект ППД проявляется в основном в торможении развития усталостных трещин.  [c.157]

Описываемые ниже методика и аппаратура обеспечивают возможность регистрации диаграмм циклического деформирования с соответствующими измерениями деформаций, наблюдения за испытываемым объектом с целью анализа условий возникновения и развития трещин и за структурными изменениями материала, определяющими его сопротивление деформированию и разрушению. Для реализации методики к испытательной установке серии МИР [ 1 ] разработаны и изготовлены система двухчастотного силовозбужде-ния с низкочастотным нагружением в области малоцикловой усталости и регистрацией при этом диаграммы циклического деформирования и система нагрева образца для осуществления данных испытаний в области высоких температур. Внешний вид модернизированной установки с пультом управления ее системами представлен на рис. 1.  [c.15]


Использование в установке бинокулярного микроскопа Лейтц с объективами ИМ-10 и ИЛ1-20 позволяет получать увеличения до 200 раз. С помощью описанного прибора авторы наблюдали в обычном и поляризованном свете на сплавах Си—Si при различных температурах образование в процессе растяжения гексагональной фазы и регистрировали соответствующие кривые удлинение — напряжение. Они также изучали влияние границ субзерен на процесс деформации чистого алюминия при разных температурах, возникновение и развитие трещин в алюминии в зависимости от температуры испытания.  [c.112]

При малоцикловом нагружении в условиях концентрации на-иряжений, когда уровень нагрузок, приводящих к возникновению и развитию усталостных трещин, более высокий, чем при обычной усталости, величина дополнительных напряжений от кручения ста-ношгтся достаточной, чтобы оказывать за.метное влияние на меха-Ш13.М роста трещины. В рассматриваемом случае это влияние было облегчено тем, что испытания проводили при высокой температуре, способствуюхцей более свободному протеканию сдвиговых деформаций.  [c.295]

Металлографические исследовалня показали, что при малоцикловой усталости разрушение в водухе происходит в результате возникновения и развития в металле единичных транс-крис-таллитных трещин, возникающих как на внутренней, так и на внешней поверхности образцов. В неингибированном растворе Mg lj коррозионно-механическое разрушение протекает з заметных признаков общей коррозии или питтиигообразоватя. ПО  [c.110]


Смотреть страницы где упоминается термин Трещины возникновение и развитие : [c.293]    [c.658]    [c.124]    [c.53]    [c.206]    [c.413]    [c.169]    [c.115]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.106 ]



ПОИСК



Разрушение (возникновение и развитие трещин)

Трещина развитие

Трещина — Возникновение

Трещины Факторы возникновения и развития

Трещины — Процесс возникновения и развития



© 2025 Mash-xxl.info Реклама на сайте