Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вольфрам защитные покрытия

Назначение покрытий разнообразно. В большинстве случаев покрытия наносят на металлические поверхности с целью защиты их от химической коррозии активных газовых, жидкостных или комбинированных фед. А в некоторых случаях они имеют противоэрозионное назначение. Распространено нанесение покрытия с целью тепловой защиты изделия. В специальных случаях наносят покрытия с магнитными, полупроводниковыми или проводниковыми свойствами либо диэлектрическими свойствами. Кроме черных металлов и сплавов в защитных покрытиях нуждаются цветные металлы (медь, латунь), тугоплавкие легкоокисляющиеся металлы (молибден, вольфрам), графит, металлокерамические  [c.249]


Прикладное значение имеют сплавы четырех тугоплавких металлов молибдена, вольфрама, тантала и ниобия. Наиболее интенсивно работы по разработке сплавов на основе этих элементов проводились в период с 1950 по 1965 г. Именно тогда были разработаны многие промышленные сплавы молибдена, ниобия и тантала. Слабым местом этих сплавов было и до сих пор остается недостаточно высокое сопротивление окислению, что, в свою очередь, стимулировало разработку систем защитных покрытий для этих сплавов. Вольфрам, молибден и их сплавы имеют достаточно высокую температуру вязко-хрупкого перехода, однако этот недостаток можно преодолеть с помощью соответствующей механической обработки, понижающей температуру перехода до приемлемых значений. Конструкционные сплавы ниобия и тантала нашли применение в жидко- и твердотопливных ракетных двигателях. В этом случае недостаточная стойкость сплавов к окислению не имеет особого значения, так как они подвергаются лишь относительно кратковременному воздействию высоких температур и происходит это, как правило, на большой высоте, где парциальное давление кислорода очень мало.  [c.341]

Комплексные силицидные покрытия для вольфрама и его сплавов пока находятся в стадии лабораторных разработок и не имеют суш,ественных преимуществ перед чистыми силицидными покрытиями [10, 11, 72, 260]. Поскольку основные области применения вольфрама связаны с температурами 1900° С и выше, требования к защитным покрытиям для него более жестки, чем для менее тугоплавких металлов. Покрытия на основе силицидов малоэффективны при температуре 1700° С и выше, т. е. именно в той температурной области, для которой вольфрам и сплавы на его основе представляют наибольший интерес. В табл. 85 приведены результаты циклических испытаний на описание различных типов комплексных покрытий.  [c.328]

При нагреве выше 400—500° С вольфрам сильно окисляется и поэтому требует специальных защитных покрытий.  [c.145]

Вольфрам и его сплавы с танталом, обладающие высокой жаропрочностью, используются в качестве сопловых вкладышей баллистических ракет, работающих на твердом топливе, для защитных покрытий графитовых сопел, для покрытий газовых рулей и т. д.  [c.101]

Вольфрам представляет значительный интерес в качестве защитного покрытия, предохраняющего основной металл от воздействия сильно действующих агентов, а также для декоративных целей. Отличаясь, подобно электролитически осажденному хрому, красивым, блестящим цветом, вольфрам имеет то преимущество, что он не реагирует ни с одной из минеральных кислот, ни с царской водкой и растворяется лишь в смеси плавиковой и азотной кислот.  [c.15]


Силицидные диффузионные покрытия являются в настоящее время наиболее распространенным видом защитных покрытий таких тугоплавких металлов, как молибден и вольфрам, при их службе в окислительной атмосфере при температурах, превышающих 1000° [1]. Принцип защиты этими покрытиями барьерный — на поверхности изделия создается, обычно диффузионным путем, сплошной слой дисилицида, изолирующий защищаемый металл от контакта с коррозионной средой. Таким образом, длительность защитного действия силицидного покрытия определяется стойкостью и сплошностью слоя дисилицида, сформированного на поверхности металла. Жаростойкость дисилицида молибдена изучена довольно подробно [2], однако коррозионное поведение силицидного покрытия имеет особенности благодаря наличию подложки, что будет показано ниже.  [c.94]

Молибден и вольфрам легко окисляются на воздухе при температуре ниже 700° С, В табл. 41 приведены наиболее широко применяемые защитные покрытия для тугоплавких металлов. Хром, цирконий и гафний при окислении образуют прочную защитную оксидную пленку.  [c.57]

Металлические покрытия, нанесенные на бериллий, молибден, вольфрам, титан, тантал, цирконий, ниобий, торий и уран, служат для облегчения пайки, в качестве защитной меры против окисления при повышенных температурах (чаще свыше 300 и 450°С, для вольфрама свыше 600°С), а для некоторых из этих металлов (молибдена, вольфрама, тантала, ниобия) —для понижения теплопроводности. Эти виды обработки приобрели большое значение в связи с требованиями космонавтики.  [c.389]

Электролитическое покрытие сплавами получило широкое практическое применение как в качестве защитно-декоративных осадков, так и для создания на основном металле слоев с особыми свойствами. В настоящее время электролитическим методом получают более сотни различных сплавов. Эти сплавы представляют собой материалы с новыми физико-химическими и механическими свойствами. Таким путем можно получать антифрикционные материалы, отличающиеся более высокими показателями свойств, нежели производимые другими способами можно создавать сплавы с более высокими антикоррозионными свойствами, чем исходные материалы можно получать более износостойкие сплавы. Расход материалов на создание таких покрытий меньше, чем при горячих способах. Некоторые металлы, с трудом осаждаемые в чистом виде, как молибден, вольфрам и марганец, путем введения небольших количеств легирующих добавок легко осаждаются в виде покрытий.  [c.188]

Способы непрерывного испарения алюминия в вакууме и материалы испарительных устройств рассмотрены в работе [81 ]. Одним из наиболее распространенных материалов, применяемых в технике испарения алюминия, является вольфрам. Особенно широкое применение находят вольфрамовые испарители (спирали, жгуты, лодочки) в установках периодического действия для получения тонких алюминиевых покрытий для защитно-декоративных и специальных целей.  [c.46]

Способ получения жаростойких покрытий в расплавах легированного алюминия, как показали проведенные исследования, представляет значительный интерес при защите от высокотемпературного окисления таких металлов новой техники, как титан и цирконий, ниобий и тантал, молибден и вольфрам. Из всех способов получения алюминиевых покрытий способ горячего алитирования является наиболее экономичным и эффективным по получаемым свойствам защитных слоев [1]. Однако из-за ряда недостатков, присущих этому способу, он до сих пор не получил должного распространения. Из-за некоторых известных методических трудностей получения покрытий из расплавов на образцах малого размера подробные исследования поверхностного насыщения чистым и легированным алюминием практически отсутствуют даже для давно освоенных сплавов, нуждающихся в защите от окисления.  [c.126]

Исследования показали, что наиболее удовлетворительным материалом покрытия для защиты поверхности волокон является вольфрам, но даже и он не настолько стабилен, чтобы его можно было использовать для покрытия малой толщины, поэтому исследовались и проводились оценки пригодности керамических покрытий на основе карбидов, боридов и окислов [8]. При выборе таких покрытий из их состава должны быть исключены металлы или бескислородные соединения металлов, образующие более стабильные, чем AlgOg, окислы. Например, предварительные эксперименты по использованию в качестве покрытия Hf (крайне стабильный карбид) сначала показали, что термообработка сапфира с покрытием при повышенных температурах не приводит в начальный момент к ухудшению поверхности. Однако после того как были проведены эксперименты по методу сидячей капли, было обнаружено, что в качестве защитного покрытия Hf в присут-  [c.193]


Обзор А. В. Бялобжеского и М. С. Цирлина посвящен высокотемпературным защитным покрытиям для таких тугоплавких металлов, как молибден, вольфрам, ниобий, тантал, к сплавов на их основе, имеющих большое значение для развития новой техники.  [c.7]

С особенно высокими температурами приходится сталкиваться при космических полетах. По своей жаропрочности для этих целей наиболее перспективны сплавы на основе молибдена. Но из-за плохого сопротивления окислению они нуждаются в защитных покрытиях и хорошего сцепления с основой. Чао, Прист и Майерс [935] в предварительном порядке исследовали долговечность и пластичность различных покрытий. В качестве исходного материала они выбрали сплав молибдена с 0,5% Ti. Листы из этого сплава защищали покрытиями, наносимыми путем камерной цементации , но детали этого процесса они не сообщают. Процесс нанесения покрытия первого типа предпо-пагает совместное осаждение кремния и легирующего элемента (бор, углерод, кобальт, хром, ниобий, тантал, ванадий, вольфрам или цирконий) за один цикл. Процесс второго типа включает два цикла. За первый цикл наносится хромистое (или хромокремниевое) покрытие, тогда как за второй цикл осуществляется совместное осаждение кремния с каким-нибудь одним металлом (или просто осаждение одного металла). Процесс третьего типа предназначен для нанесения многослойных чередующихся покрытий, причем за отдельные циклы поочередно наносятся слои хрома, кремния и легирующих элементов, связывающиеся друг с другом и с основой посредством диффузионных зон.  [c.401]

Молибден. Кристаллизуется в решетку объемноцентрированного куба и не претерпевает полн.морфных превращений вплоть до те.мпературы плавления. Окисление начинается ири 400° С и свыше 600° С происходит интенсивно с образованием трехокнсн молибдена с температурой плавления 795° С. Ввиду склонности к окислению молибден и его сплавы в окислительных средах при высоких температурах могут работать лишь с применением защитных покрытий. В среде очищенного азота молибден устойчив от температуры плавления до 1000° С. Нитриды молибдена диссоциируют при сравнительно нпзкпх температурах (до 1000 С). Молибден, как и вольфрам, инертен к водороду.  [c.377]

Жаропрочность тантала повышается при легировании его другими тугоплавкими металлами, с большинством из которых он образует твердые растворы замещения Вольфрам, молибден и гафний наиболее эффективно повышают температуру рекристаллизации тантала. При 1650 °С наибольшей прочностью обладают сплавы системы Та——Hf, а при 1930 °С — спл ав Та—(табл. 31 7) Введение в тантал более 13 % легирующих элементов приводит к ухудшению свариваемости Введение в сплавы гафния способствует повышению сопротивления окислению Однако для длительной работы при высоких температурах на воздухе сплавы тантала нуждаются в защитных покрытиях. В связи с высокой коррозионной стойкостью танта-ловые сплавы используют в химическом машиностроении для изготовления аппаратуры. Перспективны они для применения в ядерной и ракетной технике.  [c.405]

Сравнение показывает, что вольфрам из-за высокой плотности неконкурентоспособен ниобию и молибдену с точки зрения изготовления из них деталей теплового ножа. Ниобий при высокой температуре начинает взаимодействовать с продуктами сгорания топлива. По этой причине детали ТН из ниобия могут быть применены только при нанесении на них защитных покрытий. Так, ниобиевые сплавы с защитным покрытием из алюминида ниобия НЬА1з в свое время были применены в качестве материала сопла двигателя в ракете Сатурн-5 для программы Аполлон , где рабочая температура может достигать 1400 °С. Показано, что успешно работает защитное покрытие из днсилнцида молибдена, легированного гафнием, для деталей из ниобиевого сплава 5ВМЦ-2, работающих в среде продуктов сгорания твердого топлива с температурой 1700 К.  [c.143]

Одно из направлений, тщательно разрабатываемое в настоящее время, заключается в использовании для защитного покрытия графита карбидов или боридов, образующихся на рабочей поверхности материала. В этом методе используют такие материалы, как вольфрам, хром, титан. Эти материалы наносят на поверхность графита с помощью методов электроосаждения или напыления. Затем поверхность нагревается до температуры, обеспечивающей диффузию материала покрытия на определенную глубину. Далее температура поднимается до величины, необходимой для протекания реакции между углеродом и осажденным материалом, образуя карбиды in situ. Этот процесс можно контролировать достаточно точно. Наиболее важной и интересной стороной этого процесса является изучение реакций в твердом состоянии (перенос реагентов в зону реакции и их взаимодействие), необходимых для образования карбидов.  [c.334]

Из всех металлических элементов в периодической системе, только около /з можно успешно осадить электрическим методом с экономической выгодой. Многие неэлектроосажденные металлы могут быть использованы в качестве покрытий только в том случае, если они образуют на поверхности изделия достаточно ровный и прочный слой, хорошо связанный с основой. Основными мате риалами для исследований в области защитных покрытий яв ляются металлы, обладающие высокой коррозионной стойкостью такие как титан или тантал, а также металлы с высокой темпера турой плавления, такие как молибден, цирконий, вольфрам Такие металлы, как бериллий, алюминий, цирконий, ниобий молибден, титан, тантал и вольфрам, могут быть использованы как покрытия менее дорогих металлов или в том случае, если требуется сохранить определенные свойства основного материала. Так, например, антикоррозионные свойства тантала позволяют использовать его для защиты управляющих дюз жидкотопливных ракет или материалов от жидкого теплоносителя в ядерных реакторах. А использование вольфрама, электроосажденного в горловине ракетного сопла, значительно уменьшает массу и стоимость конструкции.  [c.336]


Тугоплавкие металлы (вольфрам и молибден), имеющие высокую энтальпию частиц при напылении (соответственно в расплавленном состоянии 31 и 26 ккал1моль), обеспечивают надежное сцепление покрытия с металлическими подложками без специальной подготовки поверхности (исключая медь и ее сплавы). Для получения аналогичных результатов при напылении менее тугоплавких металлов необходимо псско-струить изделия перед напылением. Металлы с более низкой энтальпией частиц образуют покрытия с меньшей прочностью сцепления. Однако, несмотря на хорошие механические характеристики, ни вольфрам, ни молибден не могут рекомендоваться как покрытия или подслои для работы при повышенных температурах в активных средах. Они интенсивно окисляются при температуре 300—400° С, и образующиеся летучие газообразные окислы взрывают защитное покрытие. Перспективным ма- териалом для напыления является никель-алюминиевый порошок. За счет экзотермической реакции между никелем и алюминием его энтальпия при паныленит может достигать значений, близких к энтальпии вольфрама и молибдена.  [c.53]

Нанесенные на термоэлектродные провода покрытия из новых органосиликатных материалов имеют более высокие механические-свойства и лучшую эластичность по сравнению с органосиликатными материалами без добавки стекла вплоть до температуры 1250° С. Важно отметить, что добавление стекол в органосиликатный материал значите,льно упростило технологию нанесения покрытий и позволило наносить их на провода из таких металлов и сплавов как копель, медь, вольфрам, на которые органосиликатные материалы ранее ложились с трудом или только с предварительной алундовой подложкой, что приводило к снижению механических свойств защитного слоя.  [c.277]

С практической точки зрения покрытия сплавами имеют 1мяого преимуществ. Эти покрытия обладают особенно однородной, плотной структурой и часто имеют блестящий вид. Их твердость во много раз превосходит твердость чистого металла. Особенно перспективны покрытия сплавами с декоративной точки зрения, так как, например, сплавы меди и золота в зависимости от условий осаждения могут быть осаждены с различными оттенками. Покрытия сплавами в результате особенностей структуры поверхности часто имеют повышенную стойкость к потускнению, высокую стойкость к истиранию и хорошие защитно-коррозионные свойства. Ограниченная в большинстве случаев пористость таких покрытий обусловливает хорошую защиту основного металла. Сплавы, состоящие из дефицитного и недефицитного металлов, выгодны с экономической точки зрения. Такие металлы, как например вольфрам и молибден, которые с большим трудом удается (или совсем не удается) осадить из водных растворов, часто осаждают в виде сплава с другим металлом.  [c.55]

Из таких двойных окислов наибольшее практическое значение имеют силикаты, так как они способны образовывать стекловидные слои с замедленной диффузией. Силицидные покрытия сио-собны эффективно защищать вольфрам и молибден даже ло 1700" а силициды некоторых других металлов, как об этом говорится в заключительной главе, тоже образуют слои достаточной защитной способности. Механизм диффузии в аморфных (и жидких) силикатах выяснен еще далеко не полностью, хотя недостатка интереса к реакциям типа шлак — металл в металлургии извлечения не ощущается [482].  [c.188]

Типы соединений. Материалы, формы и размеры деталей приборов, свариваемых контактной сваркой, отличаются большим разнообразием. Помимо углеродистых и низколегированных сталей в приборостроении приходится сваривать вольфрам, молибден, тантал, ниобий, титан, цирконий, ванадий, коррозионно-устойчивые и жаропрочные стали, медь, латунь, томпак, бериллиевую бронзу, алюминий и его сплавы, никель, платинит, ковар, нихром, феррохром, константан, хромель, копель, фехраль, манганин, золото, серебро, платина, иридий и другие металлы, используемые в приборостроении. Нередко приходится сваривать между собой металлы, резко отличающиеся по своим теплофизическим свойствам, металлы, покрытые плакирующим или защитным слоями (алюмированное железо, плакированный дюралюминий и др.)  [c.41]

Третий метод снижения скорости газовой коррозии — защита поверхности металла специальными жаростойкими покрытиями. В одних случаях поверхность, например стальной детали, покрывают термодиффузионным способом сплавом железо — алюминий или железо — хром. Оба сплава обладают высокими защитными свойствами, а сам процесс называется соответственно алитированием и термохромированием. В других случаях поверхность защищают слоем кермета— смесью металла с окислами. Керамико-металлические покрытия (керметы) интересны тем, что сочетают тугоплавкость, твердость и жаростойкость керамики с пластичностью и проводимостью металла- В качестве неметаллической составляющей используют тугоплавкие окислы АЬОз, МдО и соединения типа карбидов и нитридов. Металлическим компонентом служат металлы труппы железа, а также хром, вольфрам, молибден.  [c.52]

Благодаря высокой вязкости при нагреве без давления стекло не вытекает из пресс-формы и не прилипает к жароупорному металлу формы (титан, никель, вольфрам, хром или сплавы на их основе) в других случаях стенки формы могут быть покрыты защитным слоем, несмачивающимся стеклом при вязкости 10 — 10 Н-с-м (пирографит и другие известные в стеклоделии смазки [31, 63]). Под действием больших давлений, подаваемых на стекло от пресса, все стекло без остатка выдавливается в штабики. Штабики, выдавленные вниз при данном отверстии в пресс-форме, по ходу процесса отрезаются на заданную длину стеклорезаком 8, собираются в бункере 9 (рис. 3.20) и при необходимости подвергаются тонкому отжигу [66].  [c.76]

Электролитическое покрытие из хрома с окклюдированными частицами твердого соединения или окисла, будучи нанесено на молибден, вольфрам или графит, обеспечивает кратковременную (5—20 мин) стойкость при 1925° С в окислительных атмосферах. Защитные свойства этого покрытия, очевидно, определяются медленным окислением металлического хрома с образованием плотной пленки (представляющей собой либо СГ2О3, либо смесь твердого раствора и эвтектики СГ2О3—Сг), которое существенно замедляет диффузию кислорода. Имеет значение структурный состав хромового покрытия, поскольку осажденный металлический хром сам по себе не обеспечивает такой защиты.  [c.69]


Смотреть страницы где упоминается термин Вольфрам защитные покрытия : [c.142]    [c.148]    [c.119]    [c.386]    [c.259]   
Конструкционные материалы Энциклопедия (1965) -- [ c.304 ]



ПОИСК



Вольфрам

Покрытие защитное



© 2025 Mash-xxl.info Реклама на сайте