Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Молибден — азот

Таким образом, в феррите растворяются в большей или меньшей степени кремний, никель, кобальт, марганец, хром, молибден, вольфрам, азот, фосфор и др.  [c.305]

Каждый легирующий элемент обозначается буквой Н — никель X — хром К — кобальт М — молибден Г — марганец Д — медь Р — бор Б — ниобий Ц — цирконий С — кремний П — фосфор Ч — редкоземельные металлы В — вольфрам Т — титан А — азот Ф — ванадий Ю — алюминий.  [c.363]

Применение чистых сталей по фосфору в первую очередь, а также по примесям внедрения (кислорода, азота, водорода) и цветным металлам (олова и др.) еще более эффективное средство, чем дополнительное легирование молибденом или вольфрамом для устранения склонности к отпускной хрупкости второго рода.  [c.376]


Большое влияние на механические свойства молибдена оказывает содержание в нем кислорода, азота и углерода. Наиболее сильное влияние па повышение температуры перехода молибдена из хрупкого состояния в пластичное оказывает кислород, тысячные доли процента которого приводят к тому, что молибден становится хрупким при комнатной температуре.  [c.292]

При комнатной температуре молибден устойчив на воздухе и в кислороде. С водородом молибден не взаимодействует, поэтому спекание заготовок из молибдена производят в атмосфере водорода.. Молибден взаимодействует с азотом, который придает металлу хрупкость. Со фтором молибден взаимодействует при обычной температуре, с хлором—при 250° С, с бромом — при 450° С с парами йода не взаимодействует при температурах до 800° С пары воды разрушают молибден при 700°С. Азотирование молибдена начинается при 1500° С. При действии СО наблюдается цементация молибдена при 1400° С, а в СОз—-заметное окисление при 1200° С. Сера взаимодействует с молибденом при красном калении, а H2S — при 1200° С.  [c.292]

Твердые растворы внедрения могут возникнуть только в тех случаях, когда диаметр атома растворенного элемента невелик. Поэтому твердые растворы этого типа получаются лишь при растворении в металле (например, в железе, молибдене, хроме и т. д). углерода (атомный радиус 0,077 нм), азота (0,071 нм), водорода (0,046 нм), т. е. элементов с малым атомным радиусом. Твердые растворы внедрения могут быть только ограниченной концентрации, поскольку число пор в решетке ограничено, а атомы основного компонента сохраняются в узлах решетки. Роль этого вида твердого раствора значительна в сталях и чугунах.  [c.81]

В обозначении марки первые две цифры указывают среднее содержание углерода в сотых долях процента. Буквы за цифрами обозначают С — кремний, Г — марганец, Н — никель, М — молибден, П — фосфор, X — хром, К — кобальт, Т — титан, Ю — алюминий, Д — медь, В — вольфрам, Ф — ванадий, Р — бор, А — азот, Н — ниобий, Ц — цирконий.  [c.13]

Химические элементы в сталях условно обозначаются следующим образом алюминий (А1) — Ю, азот (А) — А (только в высоколегированных сталях), бор (В) — Р, ванадий (V) — Ф, вольфрам ( ) — В, кремний (51) — С, кобальт (Со) — К, марганец (Мп) — Г, медь (Си) — Д, молибден (Мо) — М, никель (N1) — Н, ниобий (N8) — Б, титан (Т1) — Т, хром (Сг) — X, цирконий (2г) — Ц.  [c.48]

Для повышения температуры полиморфного превращения а-ти-тана вводят алюминий, кислород, азот и углерод для понижения температуры полиморфного превращения уЗ-титана добавляют цирконий, ниобий, ванадий, молибден, марганец, железо, хром, кобальт и др.  [c.298]


Хром, молибден и вольфрам при 20 °С устойчивы при повышенных температурах они окисляются, особенно молибден и вольфрам, оксиды которых летучи. При высокой температуре эти металлы реагируют с азотом и углеродом их карбиды имеют высокие твердость и температуру плавления.  [c.111]

Отличительная особенность этих металлов — чувствительность к незначительной концентрации примесей внедрения вследствие чрезвычайно малой растворимости последних (до 0,0001 %). Поэтому промышленные хром, молибден и вольфрам даже после высокой очистки являются пересыщенными твердыми растворами, особенно при понижении температуры это приводит к хладноломкости. Даже незначительные количества кислорода, азота, углерода, серы н фосфора сообщают хладноломкость хрому, молибдену и вольфраму. Локальная концентрация примесей повышается с увеличением размеров зерна, приводя к появлению хрупкости.  [c.111]

Азот химически не реагирует с молибденом при температурах до 1500°С. Прп низких давлениях азота (- 0,01 мм рт. ст.)) реагирование не наблюдается до 2400° С (табл.. 18).  [c.458]

Для повышения сопротивления КР малоуглеродистые стали легируют элементами, связывающими углерод и азот в соединения, нерастворимые в феррите и аустените. К таким элементам относится титан, введение которого весьма заметно увеличивает стойкость к КР. Легирование сталей хромом, молибденом, алюминием, марганцем и ванадием тоже повышает сопротивление КР. Увеличение содержания фосфора снижает стойкость мягких сталей к КР.  [c.69]

В составе малоуглеродистой стали обычно присутствуют углерод, марганец, кремний, сера, фосфор, кислород, азот, водород, а также могут быть добавки легирующих элементов, используемых в качестве раскислителей хром, алюминий, бор, ванадий, титан, молибден. Содержание каждого из указанных элементов в малоуглеродистой стали составляет десятые либо сотые доли процента. Между тем, их влияние на склонность стали к хрупкости при понижении температуры может оказаться значительным, хотя удельный вес влияния каждого элемента определить весьма трудно. Поэтому исследователи рассматривают свойства чистых сплавов а-желе-за с регулируемыми добавками различных элементов [48], а промышленные стали оценивают с применением методов статистического анализа [49].  [c.39]

При взаимодействии с азотом на поверхности металлов и сплавов протекает активная адсорбция при этом скорость диффузии азота тем выше, чем больше сродство входящих в состав сплава элементов с азотом. Наибольшим сродством к азоту обладают титан и алюминий, значительно меньшим — хром, марганец, молибден, железо и кобальт.  [c.84]

Установлено, что температура перехода металлов с объемно-центрированной кубической решеткой из пластичного в хрупкое состояние во многом зависит от содержания в них примесей, образующих твердые растворы внедрения по границам зерен и внутри них. При высоких температурах в молибдене, вольфраме, хроме и железе хорошо растворяются (внедряются в решетку) атомы углерода, кислорода, азота и водорода.  [c.33]

Молибден, как и вольфрам, обладает большой прочностью которая сохраняется и при высоких температурах. Для него характерно благоприятное сочетание высокой теплопроводности, низкой теплоемкости и малого коэффициента линейного расширения. Обрабатываемость его удовлетворительная, но осложняется хрупкостью и склонностью к окислению при температурах 400—500° С. Хрупкость связана с содержанием в металле кислорода, азота и углерода. Степень загрязненности указанными примесями зависит от способа получения молибдена и его сплавов — из порошков или электро-дуговой и электроннолучевой плавкой. Способ получения определяет и структуру строения. Легче обрабатываются и дают более чистую поверхность сплавы с однородным волокнистым строением, когда длина зерна в несколько раз больше поперечного сечения.  [c.38]

Ниобий и тантал имеют примерно одинаковый предел прочности, но сильно отличаются по плотности. Оба металла отличаются повышенной пластичностью. Ниобий более устойчив, чем молибден, против окисления, но также может насыщаться кислородом, азотом и водородом и снижать при этом свои свойства. Обрабатываемость ниобия и тантала удовлетворительная. Из-за высокой пластичности эти металлы налипают на режущие кромки инструментов и образа  [c.38]


Легирующие элементы обозначают следующими буквами Н — никель, X — хром, К — кобальт, В — вольфрам, М — молибден, Т — титан, С — кремний, Ф — ванадий, Г — марганец, Д — медь, П — фосфор, Ю — алюминий, Б — ниобий, Р — бор, Н — цирконий, А — азот, Ч — редкоземельные металлы.  [c.143]

В сталях всех марок присутствуют постоянные примеси. Некоторые примеси (марганец, кремний) необходимы в металле по условиям технологии выплавки стали, другие (вредные) примеси (сера, фосфор) не поддаются полному удалению. Постоянный характер носят также так называемые скрытые примеси (кислород, водород, азот), содержание которых мало. К специальным примесям относят легирующие добавки для придания стали определенных свойств (никель, молибден, ванадий, титан и др.), а также углерод, марганец, кремний. В марках легированных металлов и сплавов указывается наличие тех или иных элементов буквами русского алфавита (табл. 2, стр. 5—6).  [c.11]

Наличие максимумов РОУ в ниобии, ванадии, в температурной области высокой подвижности атомов кислорода, углерода, азота подтверждает реальность проявления второго механизма РОУ. Кроме того, на молибдене [58] РОУ наблюдается в температурной области возникновения мелких пор (диаметром до 40 А).  [c.91]

В 1971 г. появилось первое сообщение о пространственном упорядочении пор в облученном материале. В молибдене, облученном ионами азота при температуре 870° С, Эванс наблюдал решетку пор, оси которой параллельны осям кристаллографической решетки [1441. Впоследствии упорядочение пор, вызванных облучением быстрыми нейтронами или ионами, наблюдалось в вольфраме [145—147], тантале [107, 147], ниобии [77, 147], никеле [19, 75], алюминии [148], магнии [148] и в сплавах Nb — 1% Zr [149], Mo - 0.5 Ti [147], TZ M [19, 150, 151].  [c.158]

Механические свойства монокристаллов изучались при температурах от минус 70° С до 1800° С. Результаты экспериментов представлены на рис. I. 29. Полученные данные свидетельствуют, что с повышением температуры испытания прочность монокристаллов непрерывно падает, особенно резко в области температуры до 100° С. Изменение предела прочности в зависимости от температуры испытания показывает, что монокристаллический молибден с содержанием кислорода и азота не более нескольких тысячных процентов имеет предел прочности не ниже 2,0 кГ/мм вплоть до 1800°С. Удлинение возрастает с повышением температуры, достигая максимума при 850—900° С. При более высоких температурах значение этой характеристики снижается. Величина относительного сужения растет до температуры 700° С, дальнейшее повышение температуры не оказывает влияния на изменение количественных значений сужения.  [c.96]

Установлено, что после выдержки на воздухе в течение I ч при температурах выше 700 °С покрытие состоит из P = MotN3 и молибдена, т. е. происходит диссоциация покрытия MoN. Параметр решетки покрытия й = 0,4196 нм с = 0,4020 нм ( 0,005). Фаза р = = Mo N3 образуется при температурах выше 600 °С и устойчиво сушествует вплоть до 895 °С [32], после чего разлагается на молибден и азот.  [c.73]

Низкоуглеродистые стали с молибденом и азотом могут отжигаться при температуре 850° в течение 5 часов без опасения, что это пргтедет к охрупчиванию и снижению коррозионной стойкости, как это происходит у стабилизированных сталей.  [c.126]

В Японии стали поставляют по Л8, 04051, 04052, 04102, 04103, 04104, 04105, 04106, 04202 и др. Обозначение марки начинается с буквы 8, после которой указьшают основные легирующие элементы и затем цифры. Легирующие элементы могут обозначаться или общепринятыми символами химических элементов или заглавными буквами английского алфавита (С — хром, М - молибден, А -азот, N - никель, К - кремний), или одновременно символами и буквами. Однозначные  [c.44]

Принцип обозначения химического состава наплавленного металла прежний — углерод дан в сотых долях процента, среднее содержашю основных химических элементов указано с точностью до 1% после следующих буквенных символов А — азот, Б - ниобий, В — вольфрам, Г — марганец, К — кобальт, М — молибден, II --- иике.ль, Р — бор, С —- кремний, Т — титан, Ф — ванадий, X — хром. Показатели твердости наплавленного металла в зависимости от типа электрода даны либо в исходном поело наплавки состоянии, либо после те])мообработки.  [c.113]

В процессе окислительной плавки (в атмосфере воздуха) эти элементы всегда обого-щаются кислородом [О] в растворенном виде в металле. Металлы VA подгруппы (V, Nb, Та) способны растворять кислород, водород, азот, углерод значительно в больших количествах, чем металлы Сг, Мо, W подгруппы VIA. Растворимость кислорода [О] в молибдене и ниобии приведена на рис. 131, 132. Так,  [c.274]

В марках нержавеющих высоколегированных сталей по ГОСТ 5632—72 химические элементы обозначаются следующими буквами А — азот, В — вольфрам, Д — медь, М — молибден, Р—бор, Т — титан, Ю — алюминий, X—хром, Б — ннобнй, Г — марганец, Е — селен, Н — никель, С — кремний, Ф — ванадий, К — кобальт, Ц — цирконий. Цифры, стоящие в наименовании марки после букв, указывают, так же как и в наименовании марок конструкционных сталей, процентное содержание легирующего элемента в целых едишщах. Содержание элемента, присутствующего в стали в малых количествах, цифрами не обозначается. Цифра перед буквенным обозначением указывает на среднее или при отсутствии нижнего предела на максимальное содержание углерода в стали в сотых долях процента. Наименование марки литейной стали заканчивается буквой Л.  [c.49]

Азотируют детали из стали со средним содержанием углерода, легированной алюминием, хромом,, молибденом, ванадием и др. Эти элементы образуют с азотом дисперсные нитриды (A1N, Mo. N, VN и т. д.) или карбо-ннтриды, повышающие твердость слоя (до HV 1200). Легированные азотируемые стали называются нитрал-лоями, например сталь 38ХМЮА (0,3—0,38% С, 1,35— 1,65% Сг, 0,4—0,6% Мо, 0,75—1,1% А1). Детали азотируют после их окончательной обработки, т. е. после термической обработки и шлифования. Термическая обработка до азотирования состоит в улучшении, т. е. в закалке с высоким отпуском. Таким образом структура сердцевинных зон азотированных деталей состоит из сорбита.  [c.128]

Полоний не взаи.модействует с рядом элементов при нагревании до следующих температур, °С с углеродом, алюминием и железом до 700 с азотом и кремнием до 850 с кобальтом до 900 с серой, хромом и технецием до 1000 с рением до 1040 с рутением и осмием до 1050 с молибденом, танталом и вольфрамом до 1600 [24],  [c.64]


Исследуемые легирующие элементы по влиянию на порог хладноломкости делятся на две группы 1) Nb, и Ti 2) W и Мо. Влияние Ti и Nb не установлено во всяком случае, как и у чистого ванадия, порог хладноломкости сплавов V + NbHV + TiB интервале исследованных концентраций, ниже температуры кипения жидкого азота, т.е. ниже —196° С (рис. 30). У сплава V + 2 ат.% W порог хладноломкости также ниже -196 С, но уже при 5 ат.% W он соответствует —80° С (рис. 31). Молибден тоже повышает порог хладноломкости ванадия (рис. 31). Можно считать, гго при 3 ат.% Мо сплав V - Мо имеет Гдо = -70°С, при 5,5 ат.% Мо Гзо = -35°С и при 8 ат.% М0Г50 =0°С.  [c.35]

Азотированию обычно подвергаются легированные стали, содержащие алюминий, хром, ванадий, молибден, легко образующие с азотом нитриды. В современных двигателях азотируют коленчатые валы, гильзы, цилинд-9 131  [c.131]

В табл. 1.8 приведены марки стали и сплавов, рекомендуемых ЦКБ А для энергетической арматуры АЭС. В табл. 1.9 и 1.10 приведены марки материалов, которые применяют зарубежные фирмы для изготовления узлов и деталей арматуры для АЭС, а в табл. 1.11 — химический состав материалов этих марок Механические характеристики легированных сталей, применяемых в арматуро строении, приведены в табл. 1.12—1.14. В обозначениях марок стали буквы обо значают А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь Е — селен, К — кобальт, М — молибден, Н — никель, Р — бор, С — кремний  [c.27]

Титан существует в двух аллотропических модификациях —а-титан, имею щий гексагональную, плотно упакованную решетку с периодами а = 2,9503 0,0004А и с = 4,8631 0,000А, с а 1,5873 0,0004 устойчив при темпе ратурах ниже точки полиморфного превращения 882 С, и Р-титан с кубической объемно-центрированной решеткой, период которой, определенный условно для 20° С методом экстраполяции, равен 3,283 0,003А, а при 900 — 5 — 3,3132.Л устойчив при температурах выше 882 С. Однако можно получить Р-решетку, устойчивую и при более низких температурах путем легирования титана другими металлами, так называемыми Р-стабилизаторами, наиболее употребительными из которых являются молибден, ванадий, марганец, хром, железо. Можно расширить температурный интервал существования и а-решетки путем легирования титана алюминием, кислородом и азотом, которые повышают температуру полиморфного превращения и называются а-стабилизаторами.  [c.172]


Смотреть страницы где упоминается термин Молибден — азот : [c.1]    [c.50]    [c.89]    [c.311]    [c.17]    [c.28]    [c.486]    [c.256]    [c.289]    [c.165]    [c.131]    [c.368]    [c.144]    [c.305]    [c.50]   
Смотреть главы в:

Металловедение и термическая обработка стали Том 1, 2 Издание 2  -> Молибден — азот



ПОИСК



Азот

Диаграмма состояний молибден—азот

Молибден

Молибден Взаимодействие с азотом

Молибденит



© 2025 Mash-xxl.info Реклама на сайте