Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические потери и термическая обработка

Сокращение цикла производства и снижение потерь времени по организационным причинам достигается регламентацией производственного процесса путем применения поточных способов производства в массовом и серийном машиностроении. Современная поточная линия включает обычно не только механическую, но и термическую обработку, сварку, а в ряде случаев и заготовительные процессы — горячую штамповку или литье.  [c.472]


Наиболее мощное из имеющихся у металлурга средств управления свойствами суперсплавов — это управление размером зерен в процессе ковки и термической обработки. Путем рационального выбора параметров обработки можно добиться формирования мелкозернистой структуры это обеспечивает максимально высокие механические свойства (при кратковременном растяжении) и сопротивление усталости. Правда, этого выигрыша достигают ценою некоторых потерь в характеристиках длительной прочности при повышенных температурах. Напротив, процессы в результате которых создается грубозернистая структура, дают максимально высокие характеристики длительной прочности за счет потерь в сопротивлении кратковременному растяжению и усталости. На соотношение между структурой и свойствами можно успешно влиять и с помощью ковки, и с помощью термической обработки.  [c.235]

Межслоевая прочность при сдвиге 273 Механические испытания 14 сл. Механические потери 19 сл., 92 сл. влияние ориентации 123—125" и молекулярная масса 106 в наполненных полимерах 246, 247 и пластификация 116—120 и степень сшивания 108—112 и термическая обработка 103 и трение 208  [c.307]

Исследование влияния химико-термической обработки на механические свойства (предел прочности Ов и относительное удлинение 6) проводили на цилиндрических образцах из сплава ВТЫ диаметром 1,45 мм [1]. Выбор образцов обоснован тем, что на образцах малого сечения более рельефно отражается влияние поверхностного слоя с повышенной твердостью. В результате проведенных исследований установлено, что как азотирование, так и диффузионное насыщение ферромарганцем, а также оксидирование в воздушной среде приводят к значительному охрупчиванию сплава. Насыщение, например, ферромарганцем приводит практически к полной потере пластичности сплава ВТЫ.  [c.53]

Сварные соединения высокопрочных сталей, как правило, обладают пониженной конструктивной прочностью. Это вызвано более низкими прочностными свойствами металла шва и околошовной зоны в результате потерь некоторых легирующих элементов, литой структуры и образования структур перегрева. Технологически возможно путем легирования металла шва повысить его свойства до уровня основного. Значительно труднее повысить свойства металла в зоне термического влияния. Основной металл, примыкающий к зоне сплавления, нагревается до весьма высоких температур, близких к температуре плавления. Такой нагрев приводит к образованию структур перегрева. Высокопрочные стали, нагретые до температур, близких к ликвидусу, после охлаждения теряют свои механические свойства, в особенности по показателям пластичности. Последующая термическая обработка не восстанавливает полностью свойств металла в зоне перегрева.  [c.15]


Дробеструйная обработка, обкатка роликами [54] и шлифовка—все эти операции оказывают положительное влияние на коррозионное поведение магниевых сплавов под напряжением. Оксидирование поверхности и последующее нанесение анодно-окис-ных слоев также способствуют [58] увеличению долговечности деталей при коррозионном растрескивании. Чувствительные к растрескиванию магниевые сплавы можно плакировать магниевыми сплавами, не чувствительными к коррозионному растрескиванию. Но в тех случаях, когда работают кромки, их необходимо поддерживать в увлажненном состоянии (как основу, так и плакирующий слой) для того, чтобы добиться максимального эффекта катодной защиты основы металла. Замену чувствительных к коррозионному растрескиванию сплавов нечувствительными или сплавами с более низкой чувствительностью к этому виду коррозии часто применяют без заметных потерь в механических свойствах. Мероприятия, направленные на получение полуфабрикатов с меньшим количеством выделений на границах зерен, способствуют снижению чувствительности к коррозионному растрескиванию. Термическая обработка приводит к изменению пороговых напряжений [59] и морфологии трещин, как это описано выше.  [c.280]

Этот способ соединения является экономичным. Он не требует дорогостоящих припоев, специальной проволоки и электродов, флюсов, защитных газов. Более того, отпадает последующая механическая обработка и потеря ценного металла масса конструкции не увеличивается, что имеет место при сварке, пайке и склеивании. Свойства металла в зоне соединения не изменяются, поэтому термическая обработка необязательна. Установки для диффузионной сварки можно устанавливать в линиях механической обработки и сборки деталей и узлов, исключив  [c.11]

Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности.  [c.4]

Применяют ее в термически обработанном виде. В отожженном состоянии она имеет довольно низкую твердость, что облегчает механическую обработку. Недостатком инструментальной углеродистой стали является ее склонность к потере твердости и режущих способностей при нагревании до температуры свыше 200° С.  [c.34]

Предыстория изготовления труб или технологическая наследственность , в первую очередь механическая и термическая обработка, во многом обусловливают коррозию под напряжением. Так, формование уиоминаемых выше разрушившихся спиральношовных труб без должной настройки формующих машин привело к созданию в металле остаточных напряжений до 125 МПа (табл. 4). Кроме того, формующие ролики оставили спиральные вмятины на поверхности с соответствующим наклепом и понижением коррозионной стойкости (наблюдались полосы избирательной механохимической коррозии). Остатки прокатной окалины также создают на поверхности коррозионные гальванопары, которые могут привести электрохимический потенциал локальных участков к значениям, при которых возникают трещины. Механическая обработка поверхности (например, при зачистке поверхности трубы скребками) создает неоднородность физико-механического состояния поверхностного слоя и вызывает сильную электрохимическую гетерогенность поверхности, способствующую развитию значительной локальной коррозии. Большое влияние формы и количества неметаллических включений, т. е. степени загрязнения стали, на коррозионную усталость (снижение выносливости) также обусловлено электрохимической гетерогенностью в области включения, усиливающейся при приложении нагрузки вследствие концентрации напряжений. В этом отношении является неудовлетворительным качество стали 17Г2СФ непрерывной разливки в связи с большой загрязненностью неметаллическими включениями (в частности пластичными силикатами), что привело к почти полной потере пластичности листа в направлении поперек прокатки.  [c.229]


Определять силы внешнего трения в кулачковых пара.х необходимо для вычисления величины их износа и энергетических потерь при работе. Вследствие широкого распространения кулачковых механизмов в технике спе.чтры сил, действующих в кулачковых парах, а также параметры механической и термической обработки нх поверхностей из.меняются в широких пределах. Поэтому в зонах фактического касания микроне-ровностен поверхности кулачковой пары могут наблюдаться практически все разновидности деформаций упругие, упругопластические, пластические, а также деформации, при которых сказывается влияние микроконтактов на процессы деформирования материала в микроконтактах. Учитывая эти обстоятельства, ниже рассмотрим взаимодействие кулачковых пар в условиях, когда будет проявляться один из отмеченных видов деформации материала в зонах фактического касания микронеровностей.  [c.124]

Сплавы прецизионные магнитно-мягкие — это ферромагнитные сплавы, характеризующиеся узкой петлей гистерезиса, они обладают высокой магнитной проницаемостью и малой коэрцитивной силой. Условно считается, что она не превышает 1000—1200 А/м. Сплавы используют в качестве сердечников магнитопроводов, а также магнитных экранов аппаратуры радиосвязи, радиолокации, автоматики и др. По основным магнитным, электрическим, механическим свойствам прецизионные магнитно-мягкие сплавы подразделяют на 12 фупп [195] сплавы с наивысшей магнитной проницаемостью в слабых полях сплавы с высокой магнитной проницаемостью и повышенным удельным электрическим сопротивлением сплавы с высокой магнитной проницаемостью и повышенной индукцией насыщения сплавы с прямоугольной петлей гистерезиса сплавы с высокой индукцией насыщения сплавы с низкой остаточной индукцией сплавы с повышенной деформационной стабильностью и износостойкостью сплавы с заданным температурным коэффициентом линейного расширения (ТКЛР) сплавы с высокой коррозионной стойкостью сплавы с высокой магнитострик-цией термомагнитные сплавы и материалы сплавы для работы на сверхвысоких частотах. Магнитные свойства магнитно-мягких сплавов определяются химическим составом, структурой и текстурой сплава после окончательной термической обработки. Некоторые свойства (намагниченность насыщения, температура Кюри) сравнительно слабо изменяются при небольших изменениях состава и обычно не зависят от условий изготовления и термической обработки. Другие характеристики, такие как проницаемость, коэрцитивная сила, потери на гистерезис, сильно зависят от этих факторов. Поэтому нормируемые ГОСТом и техническими условиями свойства  [c.548]

Любые современные машины, агрегаты, аппараты или какие-либо устройства, потребляющие или передающие электроэнергию, обязательно снабжены электрОконтактами, материал которых должен быть термически, химически и механически стоек, иметь малое электросопротивление (в том числе и контактное) и обладать высокими теплопроводностью, эрозионной стойкостью при воздействии электрической дуги и сопротивляемостью свариваемости или мостикообразованию при замыкании и размыкании контактов. Работоспособность электрокон-тактного материала тем лучше, чем его износ при дуговом разряде меньше, а критические сила тока и напряжение при дугообразовании выше. В табл. 27 приведены указанные характеристики для некоторых из материалов, причем численные значения силы тока и напряжения снижаются с повышением температуры, ухудшением состояния (окислением, наличием примесей и т.п.) и качества обработки поверхности контактов, а потеря массы возрастает.  [c.188]

В сварных конструкциях могут быть не только общие, но и местные деформации в виде выпучив и волн. Длинные и узкие листы, сваренные встык, под действием угловых деформаций и собственной массы получают волнистость (рис. 27), размеры которой определяются углом Р и толщиной свариваемых листов, определяющей их массу. При приварке к листу ребер поясные листы получают местные деформации - грибовидность. Кроме местных угловых деформаций могут возникать выпучины и волнистость на поверхности листа. Остаточные деформации, возникающие в результате перераспределения внутренних остаточных напряжений после сварки, называют вторичными. Это перераспределение может произойти при первом нагружении сварной конструкции, при механической, термической и газопламенной обработке сварных изделий. Остаточные сварочные напряжения, перемещения и деформации могут существенно снизить прочность, исказить точность форм и размеров конструкции, ухудшить внешний вид изделия, снизить технологическую прочность сварных соединений, что приведет к возникновению горячих или холодных трещин. В определенных условиях может снизиться статическая прочность или произойти потеря устойчивости сварной конструкции, что, в свою  [c.41]

Микроскопический характер разрушения поверхности образца при испытании разных латуней, как и бронз, различный. Он зависит от природы сплава, его структуры и механических свойств. Менее стойкие латуни, обладающие низкой способностью к наклепу при деформировании микрообъемов, имеют рыхлый вид эрозионного кратера. Значительную роль в эрозионной стойкости латуней играет величина зерна, которая зависит в основном от условий термической обработки. Например, для латуни Л90 при величине зерна 0,1—0,7 мм потери массы образца за 8 ч составили 2664 мг, а при величине зерна 0,01—0,4 мм — 1244 мг, т. е. уменьшились более чем вдвое (табл. 95). Следует заметить, что величина зерна для рекристаллизованных латуней является настолько показательным фактором, что в зарубежных странах качество латунных полуфабрикатов обычно контролируют только по величине зерна (ASTM В19—55).  [c.247]


И, наконец, термическая обработка в контролируемой газовой атмосфере устраняет лишь те изменения материала, которые связаны с потерей или приобретением кислорода. Разумеется, что все изменения, обусловленные электронным или ионным обменом, происходящим в решетке феррита с изменением температуры, имеют место при постепенном охлаждении. Поэтому материалы, медленно охлажденные в контролируемой газовой атмосфере, отличаются от резко закаленных, во-первых, отсутствием механических напряжений, микро- и макротрещин (и связанных с этим изменением электромагнитных параметров) и, во-вторых, тем, что распределение ионов по узлам решетки и концентрация разновалентных ионов в них отвечает некоторой эффективной температуре соответствующей фактическому прекращению указанного выше обмена. Поэтому можно ожидать, что материалы, медленно охлажденные в контролируемой газовой атмосфере, будут отличаться более воспроизводимыми свойствами.  [c.136]

Так, в сортопрокатных цехах на мелкосортных и проволочных гтанах упрочняют катанку и круглые сортовые профили быстрым охлаждением их при выходе из последней чистовой клети и далее на моталках и транспортерах. В результате такой термической обработки прочность металла повышается на 20—30% по сравнению с прачностью после обычного охлаждения на воздухе. Кроме того, уменьшаются потери металла на окалину, что облегчает последующее травление проволоки и волочение с большими обжатиями. При производстве сортового и листового проката широкое распространение получают разные методы термомеханической обработки (ТМО), в которых сочетаются процессы пластической деформации и фазовые превращения в стали. Наибольшее распространение получили две схемы термомеханической обработки высокотемпературная и низкотемпературная. Термомеханическая обработка существенно повышает (упрочняет) механические свойства металлов и сплавов по сравнению с обычными способами термической обработки.  [c.113]

Защита стали от окисления и обезуглероживания позволяет ликвидировать потерю металла от угара (2 3"/оПри термической обработке), снизить трудоемкость механической обработки за счет сокращения припусков, исключить операции очистки деталей от окалины  [c.164]

Деформируемые сплавы по способности упрочняться термической обработкой делятся на неупрочняемые и упрочняемые термической обработкой. К типичным неупрочняемым сплавам относятся коррозионностойкие сплавы повышенной пластичности и свариваемости, например, АМг2 (сварные баки, трубопроводы, оконные рамы), АМгб и АМц (бензино- и маслопроводы, баки сварные, заклепки). Сплавы систем А1-Мп и А1-М применяются в отожженном состоянии (рекристаллизационный отжиг) и после наклепа. В сплавы этих систем добавляют медь (0,05-5-0,2 %) Для усиления антикоррозийных свойств. В сплавы с марганцем также допускается добавление до 0,6+0,7 % Ре и до 0,6- -0,7 % 81 с целью упрочнения без существенной потери сопротивления коррозии. В сплавы с магнием добавляют иногда Ре и 2г для повышения температуры рекристаллизации Мд и Сг - для нейтрализации коррозионного воздействия железа 2п - для упрочнения Т1 и В - для измельчения зерна РЬ - для улучшения обрабатываемости резанием 81 - для улучшения свариваемости. Сплавы с магнием и марганцем применяются для сварных и клепаных элементов конструкций, испытывающих сравнительно небольшие нагрузки и требующие высокого сопротивления коррозии. Механические свойства сплавов отражены в табл. 12.8.  [c.557]

Принцип максимального трения состоит -в том, что форма заполняется расплавом через тонкий (0,5— 1,5 мм) питатель с высокой скоростью (>10—15 м/с). При этом потери на трение в питателе максимальны. Такой способ заполнения позволяет получать тонкостенные сложные отливки больших размеров. Однако при таком способе заполнения воздух, пары и газы смазки не успевают выйти из пресс-формы и попадают в расплав, образуя в теле отливки мелкие газоусадочные поры, снижающие ее герметичность- Тонкий питатель затвердевает быстрее отливки, и потому статическое давление от прессующего поршня практически не передается на затвердевающий металл. Высокая скорость охлаждения металла способствует получению отливки с мелкозернистой структурой, и, несмотря на наличие в ее теле пор, механические свойства получаются достаточно высокие. Однако такие отливки нельзя подвергать термической обработке, так как при нагреве содержащиеся в ней газы будут расширяться и отливка при нагреве будет деформироваться, ее точность снизится.  [c.393]

В табл. 9.1 представлены результаты испытаний на установке с трубкой Вентури (фиг. 9.1), проведенных Мауссоном [48] для большой группы черных и цветных металлов и сплавов, подверженных разным видам термической и механической обработки. Образцы вырезались из заготовок, полученных литьем, прокаткой, сваркой и напылением. Все испытания проводились в воде при 20 °С. Разрушение определялось по потерям объема образца за 16 ч. Общие выводы на основе результатов этих испытаний рассматривались в разд. 9.3.1.  [c.478]


Смотреть страницы где упоминается термин Механические потери и термическая обработка : [c.119]    [c.250]    [c.372]    [c.357]    [c.12]    [c.273]    [c.161]    [c.95]   
Механические свойства полимеров и полимерных композиций (1978) -- [ c.103 ]



ПОИСК



Механические Термическая обработка

Обработка механическая

Потери механические



© 2025 Mash-xxl.info Реклама на сайте