Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сила тяжести (гравитационная)

Расчет процесса ориентирования. В каждом конкретном БЗУ способ ориентирования может быть своеобразным. Наиболее распространен способ ориентирования за счет сил тяжести — гравитационного ориентирования (рис. 22).  [c.165]

Подача песка в пескоструйных аппаратах может осуществляться самотеком под действием силы тяжести (гравитационная система), может засасываться в сопло струей сжатого воздуха и нагнетаться в сопло сжатым воздухом.  [c.11]


Сейсмические данные говорят о том, что через ядро проходят только продольные волны, поперечные же волны не проходят, а это означает, что ядро Земли представляет собой среду, у которой модуль сдвига х равен нулю ). Такой средой может быть только среда, по своим физическим свойствам приближающаяся к жидкости для жидкости, как мы знаем, р1 = 0, и в ней не могут распространяться упругие поперечные волны. Однако, как показывают наблюдения над силой тяжести (гравитационные наблюдения) и наблюдения над приливными и отливными движениями, ядро Земли должно представлять собой твёрдое тело. Как мы видим, выводы сейсмологии и гравиметрии противоречат друг другу. Причина этого до сего времени остаётся невыясненной. Таким образом, наблюдения над распространением упругих волн, возникающих в результате землетрясений, позволяют сделать ряд важных заключений о внутреннем строении земного шара. Но сейсмология даёт гораздо больше. На основе её данных проводится большая работа по так называемому сейсмическому  [c.416]

Сейсмические данные говорят о том, что через ядро проходят только продольные волны, поперечные же волны не проходят, а это означает, что ядро Земли представляет собой среду, у которой модуль сдвига [х равен нулю ). Такой средой может быть только среда, по своим физическим свойствам приближающаяся к жидкости для жидкости, как мы знаем, [а = О, и в ней не могут распространяться упругие поперечные волны. Однако, как показывают наблюдения над силой тяжести (гравитационные наблюдения) и наблюдения над приливными и отливными движениями, ядро Земли должно представлять собой твердое тело. Как мы видим, выводы сейсмологии и гравиметрии противоречат друг другу. Причина этого до сего времени остается невыясненной. Таким образом, наблюдения над распространением упругих волн, возникающих в результате землетрясений, позволяют сделать ряд важных заключений о внутреннем строении земного шара. Но сейсмология дает гораздо больше. На основе ее данных проводится большая работа по так называемому сейсмическому районированию. Карты сейсмического районирования нашей необъятной родины, построенные с использованием геологических данных, позволяют предсказывать вероятные районы землетрясений определенной силы. Исходя из этих данных, в местах, подверженных сильным землетрясениям, применяются специальные меры к повышению прочности зданий и различного рода сооружений.  [c.534]

Из рис. 2.5 видно, что на груз при спиральном гладком спуске действуют сила тяжести (гравитационная) Fj. = Ог sin а сила от трения груза о рабочую поверхность  [c.20]


До сих пор при изучении течения и теплообмена в трубах мы не принимали во внимание объемные силы, действующие в потоке жидкости. Эти силы обусловлены соответствующими внешними полями, в частности полем силы тяжести (гравитационным полем). При напорном течении в трубах действие силы тяжести, как уже отмечалось, проявляется лишь при неоднородном распределении плотности в потоке жидкости. В этом случае в потоке возникают подъемные силы, под действием которых частицы жидкости, обладающие меньшей плотностью, движутся вверх, а частицы, обладающие большей плотностью, движутся вниз.  [c.314]

Рассматривая движение грунтовых вод, под термином грунтовая вода подразумевают воду, которая заполняет все поры грунта и способна передвигаться под действием сил тяжести ( гравитационная вода ).  [c.469]

Число 2 относится к волнам, главное участие в образовании которых имеет сила тяжести гравитационные же волны развиваются за препятствием следовательно, нижний предел во второй формуле (9) следует взять равным — оо, а верхний предел — равными.  [c.278]

По принципу действия грохоты различных типов аналогичны просеивание мелких классов через отверстия происходит при движении подвергаемого грохочению материала по просеивающей поверхности. Перемещение материала осуществляется под действием сил тяжести (гравитационное перемещение) или вибраций сита (вибрационное перемещение) и струи воды (гидравлическое перемещение). Различие между грохотами и состоит главным образом в способе перемещения просеиваемого материала, который в свою очередь зависит от конструкции грохота.  [c.30]

Дальнейшее упрощение связано с тем, что в качестве единственной массовой силы рассматривется лишь сила тяжести. В этом случае g = — gVz, где z — вертикальная координата, а g — гравитационное ускорение, так что уравнение Эйлера сводится к следующему  [c.48]

Нетрудно заметить, что физический смысл подобных величин заключается в том, что они соответствуют корню квадратному введенного критерия Фруда для истечения (например, = Fr ° ). Имея в виду, что последний [получен из более строгих соображений и отражает важное для гравитационного истечения соотношение сил тяжести и инерции, запишем ряд расчетных формул [Л. 30, 144, 156, 184, 356]  [c.309]

Модуль силы всемирного тяготения, действующий па материальную точку массы т, определяется равенством Р —-где ц — [М — гравитационный параметр притягивающего центра (М — его масса, / — гравитационная постоянная) и г — расстояние от центра притяжения до притягиваемой точки. Зная радиус Я небесного тела и ускорение g силы тяжести ) иа его поверхности, определить гравитационный параметр ц небесного тела и вычислить его для Земли, если ее радиус У = 6370 км, а = 9,81 м/с .  [c.388]

Определить гравитационный параметр ря и ускорение силы тяжести дп на поверхности небесного тела, если известны отношения его массы Мп и радиуса Яп к массе М и радиусу Я Земли. Вычислить эти величины для Луны, Венеры, Марса и Юпитера, для которых соответствующие отношения даны в следующей таблице  [c.388]

Отсюда следует, что гравитационная сила F больше силы тяжести или веса во всех точках Земли за исключением полюсов, где они равны. Максимальное отклонение F от G имеет место на экваторе и равно  [c.138]

Из формулы (101.41) следует, что сила тяжести на экваторе меньше гравитационной силы на 0,3%.  [c.138]

Из всего сказанного следует, что сила тяжести G есть результирующая гравитационной силы F и центробежной силы —тапер Земли, причем последняя настолько мала, что вес и гравитационная сила пренебрежимо мало отличаются друг от друга. В связи с этим во всех технических задачах эти силы считают идентичными.  [c.138]

Для безнапорных потоков, имеющих свободную поверхность с атмосферным давлением, определяющим условием частичного динамического подобия может быть равенство соотношений сил тяжести G к силам инерции J (условие гравитационного подобия) для модельного и натурного потоков  [c.81]

В механике было показано, что при перемещении между двумя точками в гравитационном поле работа силы тяжести не зависит от траектории движения тела. Силы гравитационного и электростатического взаимодействия имеют одинаковую зависимость от расстояния, векторы сил направлены вдоль прямой, соединяющей взаимодействующие точечные тела. Отсюда следует, что и при перемещении заряда в электрическом поле из одной точки в другую работа сил электрического поля не зависит от траектории его движения.  [c.137]


Пример. Гравитационный потенциал вблизи поверхности Земли. Потенциальная энергия силы тяжести тела массой М на расстоянии г от центра Земли для г > / з равна  [c.173]

Для определения гравитационной постоянной к заметим, что когда точка В находится на поверхности Земли r=R, где R — радиус Земли), сила тяготения Р равна mg, где g — ускорение силы тяжести на поверхности Земли. Отсюда  [c.674]

Понятно, что энергия диссипации (е) в двухфазном потоке будет состоять из двух слагаемых. Одно из них обусловлено проявлением работы силы тяжести (е ), что характерно для гравитационного течения пленки жидкости в отсутствии газового потока. В данном случае эта работа осуществляется против силы тяжести. Она равна . = gll. . Таким образом, [ - диссипируемая энергия при течении пленки жидкости, которая компенсируется работой силы тяжести на единицу жидкой массы. Второе слагаемое связано с энергией, получаемой жидкостью от газового потока. При взаимодействии газового потока на поверхности глубокой воды эта величина равна Ё2 = gu [38]. Таким образом, 2 - диссипируемая в пленке жидкости энергия, которая компенсируется энергией, поставляемой жидкости воздушным потоком на единицу жидкой массы. Но при воздействии газового потока на тонкие слои жидкости она  [c.30]

Центробежная сила инерции равна по абсолютному значению и противоположна по направлению силе, сообщающей телу центростремительное ускорение, т. е. силе гравитационного притяжения Земли (см. 23). Итак, в этой системе отсчета на тело действуют две силы сила тяготения к Земле и центробежная сила инерции. Так как эти силы равны по абсолютному значению и направлены в противоположные стороны, то они уравновешивают друг друга и сила тяжести при этом как бы отсутствует. Поэтому не возникает деформации тела, обусловленной силой тяжести, и тело находится в состоянии невесомости. В этом случае все тела внутри космического корабля и вблизи него движутся по отношению к кораблю так, как если бы на них не действовала ни одна из этих сил. Иначе говоря, в этом случае система отсчета, связанная с кораблем, может в некоторой области считаться инерциальной. В этом и состоит преимущество такой системы отсчета, так как она приводит ко многим упрощениям при рассмотрении движения тел в космическом корабле и вблизи него.  [c.99]

Наконец, при еще большем увеличении содержания воды в грунте она заполняет все поры и приобретает способность двигаться уже под влиянием сил тяжести и поэто.му называется гравитационной водой.  [c.294]

При установившемся течении, частицы жидкости или газа находятся под действием сил давления, обусловленных внешним механическим воздействием и создающих вынужденное движение потока, вязкостных сил, возникающих в результате внутреннего трения и массовых сил, возникающих в результате воздействия силового поля на движущуюся жидкость. Воздействие массовых сил на поток также сопровождается возникновением сил давления. Инерционные массовые силы возникают при криволинейном движении теплоносителя, а также при ускоренном или вращательном движении системы, в которой имеются потоки жидкости. Гравитационные массовые силы возникают в результате воздействия на жидкость ускорения силы тяжести.  [c.342]

Движение жидкости в грунтах н пористых средах называется фильтрацией. Обычно рассматривают движение гравитационной — свободной воды, которая находится под действием сил тяжести.  [c.276]

Длинные гравитационные волны. Рассмотрим вначале продольные волны, распространяющиеся в заполняющей канал несжимаемой жидкости под действием силы тяжести.  [c.297]

Геоцентрическая гравитационная постоянная атмосферы GM , м -с . ... 35-10 Зональные гармонические коэффициенты разложения потенциала сила тяжести  [c.1180]

Поле силы тяжести на поверхности Земли определяется потенциалом и его первыми и вторыми производными [12]. Приведем эти величины в прямоугольной системе координат с направлениями осей х — на север, у — на восток, z — вниз по направлению отвесной линии. Потенциал W является суммой потенциалов притяжения земных масс (гравитационного потенциала) и центробежных сил, возникающих при вращении Земли (центробежного потенциала), и выражается в джоулях.  [c.1181]

Подземные воды, перемещающиеся за счет силы тяжести, называются гравитационными (свободными).  [c.105]

По характеру приложения движущей силы и конструкции транспортирующие машины разделяют с тяговым элементом (лента, цепь, канат, штанга) для передачи движущей силы, без тягового элемента. Тяговый элемент имеют конвейеры ленточные, пластинчатые, скребковые, скребково-ковшовые, люлеч-ные, тележечные, грузоведущие подвесные, шагающие, элеваторы. Характерная особенность этих машин — движение груза вместе с тяговым элементом иа рабочей ветви. Без тягового элемента перемещают груз винтовые, качающиеся, роликовые конвейеры и вращающиеся транспортные трубы, для них характерно движение груза при вращательном, колебательном движениях или под действием силы тяжести (гравитационные роликовые конвейеры).  [c.171]

Заготовки из подъемников I перекатываются к станкам по наклонным желобам 2 под действием силы тяжести (гравитационный транспорт). Перед каждым многошпиндельным автоматом уста1 овлен подъемник, В одношпиндельные автоматы заготовки подаются из одного подъемника по двум гюто-кам.  [c.415]


Под гравитационным будем понимать движение, вызываемое лишь силой тяжести при отсутствии продувки слоя и каких-либо дополнительных побудителей движения (вибрации, ультразвука, переталкивателей, электромагнитных полей и пр.). Применение подобного слоя в качестве теплоносителя потребовало изучения ряда вопросов движения слоя в узких и оребренных каналах, перехода в падающий слой, распределения по параллельным каналам и пр. Именно эти вопросы в основном определяют содержание ряда последующих разделов данной главы.  [c.287]

Именно так и было сделано при вычислении работь в полях упругой и гравитационной (кулоновской) сил а также в однородном поле сил тяжести [см. формуль  [c.92]

Рис. автомобиля Массой в 1000 кг иа высоту 10 см равна F=Mgh — (l(fi 1№ г) 1№ см/с 10 см = 1в эрг.) При этом работа переходит в потенциальную энергию силы тяжести, /—работа, производимая студентом потенциальная энергия (гравитационная). Рис. <f.e. Зависимость работы, производкной студентом при поднятии автомобиля дон-кратом для смены шины, от времени. (Работа, необходимая для поднятия небольшого <a href="/info/205106">автомобиля Массой</a> в 1000 кг иа высоту 10 см равна F=Mgh — (l(fi 1№ г) 1№ см/с 10 см = 1в эрг.) При этом работа переходит в потенциальную <a href="/info/197504">энергию силы тяжести</a>, /—работа, производимая студентом <a href="/info/6472">потенциальная энергия</a> (гравитационная).
Рис. 5.19. Движение прыгуна с шгстом. В положении а) вся энергия представляет собой кинетическую энергию, зависящую от скорости, с которой бегун бежит. В положении б) прыгун опирает передний конец шеста о землю и (в особенности, если шест сделан из стеклянного волокна) запасает упругую потенциальную энергию в шесте, изгибая его. В положении в) поыгун поднимается в воздух его кинетическая энергия переходит в энергию вращательного движения вокруг нижнего конца шеста. Прыгун обладает потенциальной энкргией как за счет силы тяжести, так и за счет оставшейся упругой энергии шеста. В положении г), когда прыгун находится над планкой, его кинетическая энергия мала, так как он движется медленно, его потенциальная энергия (гравитационная), наоборот, велика. Полная энергия прыгуна с шестом не всегда остается постоянной, потому что часть энергии расходуется на преодоление тр гния (внешнего и мускульного),, а также на работу, совершаемую прыгуном при изгибе шеста. Рис. 5.19. Движение прыгуна с шгстом. В положении а) вся энергия представляет собой <a href="/info/6470">кинетическую энергию</a>, зависящую от скорости, с которой бегун бежит. В положении б) прыгун опирает передний конец шеста о землю и (в особенности, если шест сделан из <a href="/info/38809">стеклянного волокна</a>) запасает <a href="/info/147325">упругую потенциальную энергию</a> в шесте, изгибая его. В положении в) поыгун поднимается в воздух его <a href="/info/6470">кинетическая энергия</a> переходит в <a href="/info/19538">энергию вращательного движения</a> вокруг нижнего конца шеста. Прыгун обладает потенциальной энкргией как за счет <a href="/info/557">силы тяжести</a>, так и за счет оставшейся <a href="/info/7127">упругой энергии</a> шеста. В положении г), когда прыгун находится над планкой, его <a href="/info/6470">кинетическая энергия</a> мала, так как он движется медленно, его <a href="/info/6472">потенциальная энергия</a> (гравитационная), наоборот, велика. <a href="/info/16096">Полная энергия</a> прыгуна с шестом не всегда остается постоянной, потому что часть <a href="/info/274228">энергии расходуется</a> на преодоление тр гния (внешнего и мускульного),, а также на работу, совершаемую прыгуном при изгибе шеста.
Принцип эквивалентности гласит, что для наблюдателя в свободно падающем лифте законы физики такие же, как и в инер-циальных системах отсчета специальной теории относительности (по крайней мере в непосредственном соседстве с центром лифта). Действия ускоренного движения и силы тяжести полностью взаимно уничтожаются. Наблюдатель, сидящий в закрытом лифте и регистрирующий силы, представляющиеся ему гравитационными, не может сказать, какая доля этих сил обусловлена ускорением и какая — действительными гравитационными силами. Он войбще не обнаружит никаких сил, если только на лифт не подействуют какие-либо другие (т. е. отличные от гравитационных) силы. Постулированный принцип эквивалентности требует, в частности, чтобы отношение инертных масс к гравитационным удовлетворяло тождеству Мин/Л гр==1. Невесомость человека в спутнике на орбите является следствием принципа эквивалентности.  [c.420]

Со времен Галилея известно, однако, что именно этим свойством отличается поле тяготения, в котором все массы приобретают одинаковые ускорения. Масса в поле тяготения является количественной характеристикой силы, с которой тело притягивается к другим телам ( тяжелая масса). С другой стороны, при движении тела под действием других сил, отличных от сил тяготения, масса является количественной характеристикой инертности тел, т. е. их способности замедлять процесс изменения собственной скорости ( инертная масса). Понятия инертной и тяжелой масс, казалось бы, не имеют между собой ничего общего, поскольку первое из них относится к движению в любых нолях, а второе — только в гравитационных полях. Тем более примечательными оказались эксперименты Р. Этвеша (1848—1919), показавшего (с достаточно большой точностью), что обе массы пропорциональны друг другу, и, следовательно, выбором единиц их можно сделать просто равными. Этот результат, первоначально казавшийся случайным, Эйнштейн воспринял как фундаментальный физический принцип, давший возможность сделать вывод о локальной эквивалентности полей сил инерции и тяготения и тем самым установить принцип эквивалентности инертной и тяжелой масс ). Следующее простое рассуждение, принадлежащее Эйнштейну, иллюстрирует эту мысль. Предположим, что в кабине лифта свободно падает твердое тело. Если кабина лифта покоится относительно Земли, то тело будет двигаться в локально однородном поле тяжести с постоянным ускорением g. Пусть теперь одновременно с телом свободно падает и кабина лифта. При одинаковых начальных условиях для кабины и тела последнее будет находиться в покое относительно кабины. В ускоренной (неинерциальной) системе отсчета, связанной с кабиной, на тело наряду с силой тяжести бу,дет действовать равная и противополоокная ей по направлению сила инерции, и под действием этих двух сил тело будет находиться в равновесии ( невесомость ).  [c.474]

До сих пор мы пользовались системой отсчета, связанной с Землей, и ее неинерциальность учитывали через силу тяжести, представляющую собой результирующую двух сил силы гравитационного притяжения тела к Земле и центробежной силы инерции, обусловленной вращением Земли вокруг оси (см. 26).  [c.99]

На рис. 4.2 показаны профили скорости в пленке, отвечающие разным соотношениям сил тяжести и трения на ее поверхности, рассмотренным выше. На рис. 4.2, а и б приведены случаи, отвечающие свободно-гравитационному и спутному течению газа и жидкости. При встречном течении (рис. 4.2, в) средняя скорость и расход жидкости в пленке (при 8q = idem) уменьшаются, но направление течения по всей толщине пленки сохраняется постоянным (вниз). При высоких скоростях газа, движущегося вверх, возникает однонаправленное (спутное) течение газа и жидкости вверх (рис. 4.2, г). Между Двумя последними режимами наблюдается упомянутый выше режим захлебывания (flooding). В условиях нормальной гравитации захле-  [c.161]


Смотреть страницы где упоминается термин Сила тяжести (гравитационная) : [c.262]    [c.360]    [c.140]    [c.286]    [c.160]    [c.76]    [c.255]    [c.14]    [c.389]    [c.62]    [c.96]    [c.389]   
Гидродинамика при малых числах Рейнольдса (1976) -- [ c.228 , c.338 , c.420 ]



ПОИСК



Сила гравитационная (сила тяжести)

Силы гравитационные

Силы тяжести

Тяжесть



© 2025 Mash-xxl.info Реклама на сайте