Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристики напряженно-деформированного состояния деформационные

Характеристики напряженно-деформированного состояния деформационные 3, 6  [c.252]

Методы экспериментального определения характеристик трещиностойкости в настоящее время достаточно разработаны и регламентированы соответствующими нормативными техническими документами (НТД) для различных видов нагружения [3-9]. Идеология построения и научные основы этих документов рассмотрены в [10]. Первым основополагающим документом явились методические указания РД 50-260-81, регламентирующие определение характеристик трещиностойкости при статическом нагружении [9], доработка и совершенствование которых завершились разработкой ГОСТ 25.506-85 [3]. Развитие теоретических основ линейной механики разрушения (1955-1965 гг.) выдвинуло фундаментальную характеристику напряженно-деформированного состояния и прочности хрупких тел с трещинами — коэффициент интенсивности напряжений. В дальнейшем наибольшее внимание уделялось энергетическим и деформационным характеристикам нелинейной механики разрушения (1970-1980 гг.). При разработке документов, регламентирующих экспериментальные методы и технологии определения характеристик трещиностойкости, во внимание принимались следующие обстоятельства  [c.15]


Использование в качестве характеристики напряженно-деформированного состояния материала или детали с трещиной, подвергающейся циклическому нагружению силовых, деформационных и энергетических характеристик, имеющих место в локальных объемах материала у вершины трещины, позволяет более обоснованно и целенаправленно изучать процесс усталостного разрушения, прогнозировать долговечность и предельное состояние с учетом влияния свойств материала и условий их нагружения и дает новые возможности для сравнительной оценки способности магериалов сопротивляться разрушению при наличии трещин.  [c.3]

В рассмотренные выше зависимости входят в основном характеристики механических свойств материалов, определенные при статическом нагружении. При этом предполагается, что развитие трещины происходит в каждом цикле, поэтому не учитывается накопление повреждений и изменение характеристик механических свойств материала у вершины при циклическом нагружении. Силовые, энергетические и деформационные характеристики режимов циклического нагружения, определяемые расчетом, используемые в указанных зависимостях, не учитывают влияния остаточных напряжений, изменение толщины образцов и коэффициента асимметрии цикла на реальное напряженно-деформированное состояние материала у вершины трещины, когда размеры пластических зон достаточно велики, но не происходит пластического течения всего оставшегося сечения образца. Все это ограничивает применение рассмотренных зависимостей, как правило, только исследованными-материалами, условиями испытаний, режимами нагружения и толщинами образцов и не позволяет прогнозировать условий перехода к нестабильному развитию трещин и закономерностей нестабильного развития трещин.  [c.31]

Практика проектирования, строительства и эксплуатации аэродромных покрытий показывает, что их несущая способность, надежность и в целом напряженно-деформированное состояние определяются влиянием конструктивных особенностей покрытия в целом. К таким особенностям прежде всего относятся толщина и прочность несущих слоев покрытия, соотношение их жесткостных характеристик, конструкция основания начальные зазоры под плитами, которые могут иметь место при некачественном монтаже или неровном основании совмещение или несовмещение швов в нижнем и верхнем слое наращивания аэродромного покрытия как в монолитном, так и в сборном вариантах зазоры между несущими слоями в покрытиях, возникающие от действия эксплуатационных нагрузок толщина и деформативные характеристики разделительной (выравнивающей) прослойки между старым и новым слоями покрытия стыковые соединения между плитами, которые во многом определяют работу покрытий и величину усилий ширина рабочих и деформационных швов в плитах и температурных блоках, их размеры (длина) состояние, прочностные и деформативные характеристики основания под аэродромным покрытием, его влажность.  [c.186]


Экспериментальное определение критериальной характеристики твердого тела Jj может быть основано на экспериментальном анализе напряженно-деформированного состояния у вершины трещины (например, с помощью метода делительных сеток, малобазных тензо-датчиков, метода муара с использованием деформационной теории пластичности) с последующим интегрированием по выбранному контуру в соответствии с формулой (2.24). При этом используется свойство инвариантности контурного интеграла. Другой метод экспериментального определения Ji предполагает использование диаграммы деформирования образца с трещиной на основе соотношения (2.25).  [c.86]

Вопросы деформируемости грунтовых оснований и массивов. Одной из основных практических задач, для решения которых необходимо привлекать методы механики грунтов, является оценка деформаций и смещений грунта вблизи фундаментов зданий и сооружений, а также деформаций грунта в окрестности подземных сооружений. Напряженно-деформированные состояния указанных сооружений и грунта, на котором или в котором они возведены, существенным образом связаны. Поэтому для расчета деформируемости (эксплуатационной пригодности), прочности и устойчивости этих сооружений необходимо знание деформационных характеристик грунтового массива, В связи с этим один из важных разделов механики грунтов имеет дело с экспериментальным изучением деформаций различных грунтов под нагрузкой и разработкой теоретических методов количественного описания и расчёта поведения системы сооружение — грунтовый массив .  [c.204]

Отмеченное непостоянство сопротивления деформированию при малоцикловом нагружении материала, а также связь характеристик деформирования и разрушения приводят к необходимости осуществлять исследование прочности при малом числе циклов нагружения с непрерывным контролем и фиксацией изменения напряженного и деформированного состояния в процессе циклических нагружений. При этом методы определения механических свойств должны включать в равной степени исследование как деформационных, так и прочностных характеристик.  [c.209]

При анализе механизма диффузионных процессов в напряженно-деформированных полимерах необходимо иметь полную характеристику их напряженного состояния и изменения этого состояния во времени. Для исследования деформационных и релаксационных свойств полимерных кольцевых образцов при сжатии применяют прибор, изображенный на рис. 9.  [c.24]

Рекристаллизационный отжиг после холодной пластической деформации в значительной степени снимает напряжения второго рода и восстанавливает характеристики прочности и пластичности. Деформационное упрочнение существенно отличает холодную штамповку от деформирования в горячем состоянии.  [c.279]

Таким образом, для широкого диапазона условий нагружения [15, 49] суммарное повреждение, определенное в соответствии с уравнением (2.39) или (2.41), укладывается, как правило, в полосе разброса 0,5... 1,5. Это свидетельствует о возможности использования деформационно-кинетического критерия для расчета прочности при малоцикловом и длительном малоцикловом нагружении. Однако необходимо использовать результаты только корректно поставленных экспериментов, обеспечивающих получение полной информации о параметрах процесса деформирования и характере изменения с числом циклов и -во времени нагрузок (напряжений), деформаций и температур в зоне достижения предельного состояния по условиям малоциклового разрушения, а также систему базовых данных и расчетных характеристик, необходимых для правильной оценки повреждений, накопленных в ходе повторных нагружений.  [c.101]

Отмеченные ограничения возникают в результате стремления расширить области применения основных положений линейной механики разрушения на условия упругопластического деформирования и разрушения. Однако возможности такого перехода связаны с уровнем номинальной нагруженности рассчитываемых элементов и влиянием эксплуатационных факторов (температура, скорость нагружения и Т.Д.). Очевидно, что в этих условиях необходим анализ закономерностей, характеристик и критериев упругопластического деформирования и разрушения. Важным аспектом данного анализа является оценка влияния эффектов объемности напряженного состояния на определяемые характеристики трещиностойкости и его учет в уравнениях предельного состояния. Предварительные результаты, полученные в этом направлении, привели к необходимости использовать в расчетных соотношениях эффективный предел текучести в условиях, отличных от линейного однородного напряженного состояния. Наиболее успешно такой подход реализован в отношении деформационного (коэффициент интенсивности деформаций К[(,(,) и энергетического (Л-интеграл) критериев упругопластического разрушения [14, 30-32].  [c.22]


В поврежденных средах поведение микродефектов структуры меняется в зависимости от условий нагружения. В связи с этим для материалов, содержащих микротрещины, включения, поры, характерна зависимость деформационных и прочностных характеристик от вида напряженного состояния, усложняющая описание процесса деформирования. Анализ экспериментальных данных позволяет отметить отсутствие для рассматриваемых сред единой диаграммы зависимости интенсивности касательных напряжений от интенсивности деформаций, взаимосвязь сдвигового и объемного деформирования, появление необратимых объемных деформаций, а также другие особенности. Подобными свойствами обладают конструкционные графиты, бетон, чугун, некоторые керамические и композитные материалы, горные породы и др. [1-7  [c.62]

Отрицательное влияние трещин на прочность материалов и деталей. машин при статическом и циклическом нагружениях известно давно. В последние годы исследованию этого влияния уделяется особенно большое внимание и получены новые существенные результаты. Прог-ресс в исследованиях объясняется в первую очередь разработкой методов оценки напряженно-деформированного состояния в вершине трещины и перехода в связи с этим от качественных методов оценки влияния трещин на прочность к количественным. В качестве характеристик предельного состояния при наличии трещин используются критические значения силовых, деформационных и энергетических характеристик напряженно-деформированного состояния в вершине трещины.  [c.6]

Особенностью напряженно-деформированного состояния твердых прослоек является реализация в них эффекта контактного разупрочнения, заключаюш,егося в возникновении благоприятной мягкой схемы напряженного состояний и приводящей к улучшению деформационных характеристик сварного соединения (удлинения, сужения, трещиностойко-сти и др.). На основе установленных закономерностей изменения касательных напряжений на контактной плоскости твердой прослойки, при которой ее металл полностью перейдет в пластическое состояние, получены уточненные формулы.  [c.97]

Изложенный в книге анализ законом ериостей деформирования и разрушения позволяет сделать заключение о возможности использования деформационно-кинетических критериев разрушения в условиях длительного малоциклового и неизотермического нагружения. При этом долговечность элементов конструкций оценивают на базе данных о напряженно-деформированном состоянии с учетом кинетики по числу циклов и во времени), а также системы расчетных характеристик малоцикловой прочности конструкционного материала (принимая во внимание изменения механических свойств в процессе длительного высокотемпературного нагружения за пределами упругости).  [c.230]

Оценка несущей способности элементов конструкций при малоцикловом нагружении основана на анализе напряженного и деформированного состояния в зонах концентрации напряжений (деформаций) с использованием кинетики циклических деформационных свойств материалов по числу циклов нагружения и соот-иетствующих критериев разрушения. Изменение деформационных характеристик зависит как от условий нагружения, так и от структурного состояния материала и может характеризоваться либо увеличением (разупрочняющиеся материалы), либо уменьшением (упрочняющиеся материалы), либо неизменностью (циклически стабилизирующиеся материалы) ширины петли гистерезиса с ростом числа циклов нагружения с заданной амплитудой нагрузки (напряжение) в цикле.  [c.6]

Понятие прочности ассоциируется с сопротивлением материала его разрушению (нарушению сплошности среды), происходящему под действием механического поля. Реакция на механическое воздействие характеризуется напряженным и деформированным состоянием, а связь этих состояний обусловлена обобщенным временныл фактором, поэтому прочностные свойства резин наиболее полно должны быть определены как предельные эцачения деформационных свойств, т. е. соотношений напряжение о — деформация е — обобщенное время Ь, при которых в заданных условиях нагружения происходит разрушение материала. Поэтому прочностные свойства резин (предельные напряжения, деформации) существенно зависят от режима деформирования, и их следует характеризовать в совокупности, указывая все механические параметры, или условия нагружения. Минимальное число характеристик — это предельные напряжение сг и деформация е при обобщенном временном факторе I, включающем как время, так и температуру. Практически необходимо определять также вид деформации, среду, состояние материала (высокоэластическое, застеклованное, хрупкое) и масштабный фактор (объем, форма, размеры).  [c.182]

Физическая сущность формирования ПС с неоднородными свойствами обусловлена специфическими особенностями развития пластических деформаций и температур в зоне резания, их вероятностным характером из-за существенного влияршя случайных факторов. При пластической деформации формируются локальные очаги с повышенной плотностью дислокаций, которые являются потенциальными источниками зарождения трещин, неоднородно распределяемых в зоне разрушения. Случайный характер расположения зерен металла, направлений их кристаллографических плоскостей, распределения дефектов кристаллов и их скоплений, которые также могут служить источниками зарождения трещин или барьерами их распространения, усложняют картину физических процессов в зоне резания и формирования ПС. Поэтому даже при практически постоянных параметрах режимов резания и режущего инструмента характеристики микрорельефа обработанной поверхности, деформационного упрочнения (глубина и степень наклепа), напряженное состояние ПС будут случайными величинами. Положение точки раздела материала, уходящего со стружкой и деталью, ограничено положением очага разрушения возле режущей кромки, имеющей радиус округления. Чем больше очаг разрушения, тем выше вероятность того, что будут возрастать колебания толщины деформированного слоя и характеристик субструктуры упрочнения, т.е. формирование ПС детали с нестабильными свойствами.  [c.110]


Основное условие получения достоверных результатов в ква-зистатических испытаниях — поддержание с заданной точностью однородности напряженного и деформационного состояния материала в объеме рабочей части образца. Это позволяет принимать регистрируемые зависимости между напряжением и деформацией за характеристики поведения локального объема материала. Таким методом определены характеристики сопротивления материалов деформированию в большинстве проведенных до настоящего времени исследований, в основном при испытаниях на растяжение или сжатие со скоростями до 10 м/с [69, 167, 208, 210, 305, 406, 409]. Область более высоких скоростей деформирования, особенно при испытаниях на растяжение, обеспечивающих получение наиболее полной информации о поведении материала под нагрузкой, практически не исследована. Такое ограничение исследований обусловлено тем, что с ростом скорости деформации возрастает влияние волновых процессов и радиальной инерции в образце и цепи нагружения, ведущих к нарушению однородности деформации и одноосности напряженного состояния в объеме рабочей части образца и затрудняющих приведение усилий и деформаций в материале. Уменьшение влияния этих эффектов требует разработки специальных методик для испытаний с высокими скоростями деформации.  [c.13]

Имеющиеся в титане системы скольжения неравноценны между собой на монокристаллах критическое напряжение сдвига по плоскости призмы равно 5 кгс/мм , а по плоскости базиса — 11 кгс/мм. В мелкозернистых поликристаллических образцах обе указанные характеристики повышаются, а различие между ними уменьшается. Тем не менее, различные плоскости скольжения, по-видимому, неодновременно активизируются при нагружении и исчерпываются по мере деформирования. В результате этого деформационное (физическое) упрочнение у титана меньше, чем уОЦК- и ГЦК-металлов, машр лная диаграмма растяжения имеет более пологий характер, а шейка разрывных образцов менее локализована. В крупнозернистых образцах, особенно когда диаметр образца соизмерим с размерами зерен, сопротивление малым пластическим деформациям ((Год существенно снижается. Из табл. 11 видно, что в весьма крупнозернистом (литом или перегретом) состоянии  [c.43]

Расчет долговечности при циклическом упругопластическом деформировании основан на использовании циклических деформационных характеристик материалов,, изменяющихся с числом циклов нагружения, и величины предельной пластичности при однократном статическом разрыве. Вследствие структурной неоднородности поликристаллических материалов, к которым относятся конструх ционные стали и сплавы, при циклическом упругопластическом деформировании наблюдается неоднородность развития пластической деформации в отдельных зернах (или участках) рабочей базы образца, нагружаемого в условиях однородного напряженного состояния. В результате в участках с повышенными значениями пластической деформации (по сравнению со сред ней) возникают предельные по накопленному повреждению состояния с образованием микротрещин. На основе эксперименталЬ ного измбрения локальных деформаций на поверхности образцэ1 показана возможность описания рассредоточенного трещинообразования при малоцикловом нагружении (статья С. В. Серен-сена, А. Н. Романова и М. М. Гаденина). При этом показано так--же, что степень структурной неоднородности может быть описана через параметры нормального закона распределения микротвердости.  [c.3]

Начальный наклон криволинейных диаграмм деформирования чаш е всего совпадает для разных типов пропорционального нагружения. В большей степени чувствительность деформационных характеристик к виду напряженного состояния проявляется в области нелинейного деформирования, когда под действием достаточно высоких нагрузок происходит взаимодействие берегов микротреш,ин, а также образование и развитие новых де-сЬектов.  [c.64]

Свойство конструкционных материалов упрочняться при пластическом деформировании часто используется на практике для повышения их механических характеристик (механическое упрочнение) и несущей способности конструкций (например, автофретирование). Материал подвергается упрочнению в процессе технологических операций — гибки, ковки, штамповки, которые приводят к деформационной анизотропии материала, оказывающей заметное влияние на его последующее поведение под нагрузкой. В связи с этим актуальное значение приобретают экспериментальные исследования предыстории нагружения на процессы деформирования при разных видах напряженного состояния, а также опытное определение предельных состояний при различных величинах допуска на пластическую деформацию.  [c.278]


Смотреть страницы где упоминается термин Характеристики напряженно-деформированного состояния деформационные : [c.59]    [c.94]    [c.217]    [c.2]   
Трещиностойкость металлов при циклическом нагружении (1987) -- [ c.3 , c.6 ]



ПОИСК



Деформационные швы

Напряженно

Напряженность

Состояние деформированное

Состояние деформированное Характеристики

Состояние напряженно-деформированное

Характеристики напряженно-деформированного состояния

Характеристики состояния



© 2025 Mash-xxl.info Реклама на сайте