Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Мельницы Схема

Для перетирания руды в рудниках применяется чилийская мельница, схема которой изображена на рис. 81. Бегуны ЛГ — тяжелые чугунные колеса со стальными обода-ми — катятся по дну неподвижной чаши, вращаясь вокруг вертикальной оси 00 с угловой скоростью и вокруг собственных осей ОСи ОС Сусловыми скоростями й)л. Очевидно, (0 — скорость переносного вращательного движения, а скорости (1), — скорости относительных вращательных движений колес. Движение каждого бегуна—это движение твердого тела вокруг неподвижной точки О. Следовательно, мгновенная ось будет проходить через точку О и некоторую точку А, лежащую на общей образующей конической поверхности бегуна и  [c.180]


Для приготовления наиболее однородной смеси фторопласта с наполнителями компоненты были смешаны в машине типа коллоидной мельницы, схема которой представлена на рис. 4.  [c.41]

Топки с шаровыми углеразмольными мельницами. Схема устройства углеразмольной установки с шаровой мельницей приведена на фиг. 5-16.  [c.61]

Прямоточный пылегазовый парогенератор с шахтными мельницами Питания, топлива и первичного воздуха То же для однопоточного пылегазового парогенератора с шахтными мельницами. Схема предусматривает сжигание угля или газа 13-70 В зависимости от положения переключателя выбора топлива в работу вводится блокировка, связывающая регулятор питания с одним из двух регуляторов топлива угля или газа. В случае возникновения ограничений по расходу угля или газа предусматривается блокировка, которая при конечных положениях органов, регулирующих подачу угля или газа, переключает силовые цепи регулятора топлива на управление регулирующим клапаном питания (с переменой знака), а регулятора питания —на управление регули- оо рующим органом топлива (с тем же знаком) g  [c.849]

Для получения пыли с / 9о<25% на молотковых мельницах устанавливаются центробежные сепараторы, применяемые также на шаровых барабанных и среднеходных мельницах. Схема центробежного сепаратора и направление движения пыли в нем показаны на рис. 5-15. Аэросмесь из мельницы поступает в расширяющийся патрубок и затем в пространство между наружным и Внутренним конусами сепаратора. За счет снижения скорости в этом пространстве происходит выпадение из потока наиболее крупных и тяжелых фракций пыли. Торможение потока производится также отбойной плитой, устанавливаемой в нижней части внутреннего конуса центробежных сепараторов молотковых мельниц. Оставшиеся частицы выносятся потоком в верхнюю часть сепаратора, где установлены поворотные лопатки, регулирующие тонкость пыли. Поток аэропыли в верхней части сепаратора поворачивает и попадает в межлопаточные каналы, образованные регулирующими лопатками. В результате закрутки потока в регулирующих лопатках, обычно устанавливаемых под углом 20—45° к соответствующему радиусу сепаратора, из потока выпадают наиболее крупные фракции пыли. Выпадение крупных фракций происходит под действием центробежной силы, отбрасывающей крупные пылинки к стенкам внутреннего конуса, по которым они оседают вниз и через течку возврата уноса снова поступают в мельницу. Готовая пыль подхватывается потоком и, повернув на угол 180°, отводится через центральный патрубок сепаратора. Если телескопическая насадка опущена, то поток аэросмеси делает дополнительный поворот вниз перед поступлением в центральный патрубок. Это обеспечивает получение пыли более тонкого помола. Одним из основных недостатков центробежных сепараторов при установке их на молотковых мельницах является неравномерный износ бил по длине ротора, а также увеличение габаритов мельничной установки при использовании мельниц, имеющих отношение длины ротора к его диаметру больше единицы.  [c.100]


На современных гипсовых заводах сушку и помол ведут одновременно в одних п тех же аппаратах — шахтных, аэробильных и роликовых мельницах. Схема производства строительного гипса с применением шахтных мельниц и варочных котлов представлена на рис. 8.  [c.66]

Мельница, схема пылеприготовления  [c.45]

В котельных электростанций распространена так называемая шахтная мельница, схема установки которой приведена на рис. 6. Уголь в ней измельчается под действием ударов бил—стальных полос, закрепленных на быстровращающемся роторе мельницы (рис. 7). В шахте мельницы угольная пыль отвеивается и подсушивается до ее поступления в топку котла.  [c.95]

Схема котла, работающего на пылевидном угле, приведена на рис. 18.13. Топливо с угольного склада после дробления подается конвейером в бункер сырого у [ л я /, из которого направляется в систему пылеприготовления, имеющую углеразмольную мельницу 2. Воздухом, нагнетаемым специальным  [c.158]

Тип схемы пылеприготовления зависит от типа размольного устройства. Наибольшее распространение получили молотковые (ММ), шаровые барабанные (ШБМ), среднеходные (шаровые и валковые) мельницы и мельницы-вентиляторы.  [c.47]

В системах прямого вдувания могут устанавливать и ШБМ 2 (рис. 19, г). Как и в схемах с мельницами-вентиляторами, сушка топлива может производиться топочными газами или смесью топочных газов с горячим воздухом. Последнее обеспечивается подачей горячего воздуха в смесительную камеру J6 (рис. 19, в, г) из общего короба J горячего воздуха.  [c.47]

Схемы пылеприготовления с различными размольными устройствами аналогичны по принципу действия и установленному (кроме мельниц) оборудованию. Сырое топливо из бункера 5 сырого угля  [c.47]

Для отделения мелкой пыли от крупных частиц предусмотрена установка сепараторов 22, распределителей воздуха 21 с камерами. В схемах с ММ сепараторы соединены непосредственно с размольным устройством (на схеме не показаны). Уловленная крупная пыль по течке 23 возврата снова подается на вход в мельницу 2. Чтобы исключить обратное движение сушильного агента, на течках 23 возврата и на течках после питателей сырого топлива устанавливаются клапаны-мигалки 7. В схемах с ШБМ 2 для преодоления сопротивления предусмотрена установка основных 10 и дополнительных тягодутьевых машин — мельничных вен-  [c.48]

В последнее время получила распространение система прямого вдувания с пылеконцентратором 19, который устанавливают после мельниц. Пылеконцентратор позволяет отделить большую часть пыли от отработанного сушильного агента и подать ее в основные горелки 8, а основную часть сушильного агента и оставшуюся часть пыли — в сбросные сопла J8. Такая схема обеспечивает интенсификацию и стабильность горения и более полное выгорание топлива, ее можно использовать при организации сжигания таких низкокачественных углей, как лигниты (с влажностью до 60 % и с высокой зольностью).  [c.49]

Индивидуальные системы пылеприготовления с промежуточными бункерами 8 (рис. 20) позволяют уменьшить зависимость работы котла от характеристик поступающего топлива и условий работы мельниц. В отличие от ранее рассмотренных схем готовая пыль вместе с отработанным сушильным агентом после сепаратора 2 направляется в циклон 5, где происходит отделение пыли от сушильного агента. После циклона 5 пыль по течкам поступает в бункер 8 пыли, откуда питателем 9 подается в смеситель 10, установленный на пылепроводе, ведущем к горелке 4. В этот же пылепровод поступает сушильный агент из циклона 5, транспортирующий пыль к горелкам. Для преодоления значительного гидравлического сопротивления тракта пылеприготовления предусмотрен мельничный вентилятор 12 с распределителем первичного воздуха 11 за ним. Размещение мельничного вентилятора после циклонов 5 позволяет обеспечить работу всей системы пылеприготовления под разрежением (уменьшается запыленность помещения), а транспортировку готовой пыли к горелкам — под наддувом.  [c.49]

Рис. 23. Шаровая барабанная мельница и схема размола Рис. 23. <a href="/info/30279">Шаровая барабанная мельница</a> и схема размола

Среднеходные мельницы (СМ) чаш,е используют в схемах прямого вдувания. Вследствие их повышенной чувствительности к попаданию металлических предметов, они пока не получили широкого распространения. Куски топлива в СМ раздавливаются на подвижном нижнем столе 1 (рис. 24) вращаюш,имися шарами (в шаровых) или коническими валками 2 (в валковых). Шары и валки прижимаются к нижнему столу усилием упорных пружин 3. Сырое топливо поступает сверху на центральную часть нижнего вращающегося стола и под действием центробежных сил отбрасывается под шары или конические валки. Измельченное топливо выносится к сепаратору сушильным агентом, вводимым по периферии нижнего стола. В качестве сушильного агента к мельницам подводится преимущественно воздух с температурой 250—300 С, их применяют для топлив умеренной влажности. Среднеходные мельницы достаточно компактны износ мелющих органов и расход энергии на размол топлива относительно небольшие.  [c.54]

Расход энергии на размол угля в значительной степени зависит от типа выбранной мельницы и характеристик топлива, а расходы на пневматическое транспортирование — от схемы системы 58  [c.58]

Указания к предварительному выбору схемы приготовления пыли и типа мельницы  [c.328]

Сопоставление схем, изображенных на рис. 7-20, показывает, что наиболее простой является система приготовления пыли с молотковыми мельницами, наиболее сложной—с шаровыми барабанными мельницами, остальные схе.мы занимают промежуточные места.  [c.328]

Схема пылеприготовления с шаровой барабанной мельницей и промежуточным бункером (рис. 22—5) предназначается для приготовления пылевидного топлива из антрацита и каменных углей (за исключением мягких каменных углей с выходом летучих на горючую массу, превы-  [c.269]

Схемы инструкций фрикционных передач с постоянным передаточным числом приведены на рис. 14.1, а, пример конструктивного исполнения — на рис. 14.1, б. На рисунке показаны три схемы фрикционных передач с параллельными валами, ведущие и ведомые звенья которых имеют форму тел вращения различного очертания — цилиндрическую, бочкообразную и желобчато-клинчатую. Передачи, выполненные по этой схеме, находят применение в приводе барабанных грохотов, гравиемоек, шаровых мельниц, винтовых прессов, аппаратов для записи и воспроизведения звука и др. На рис. 14.1, б представлена фрикционная передача с коническими катками, допускающая преобразование вращательного движения относительно пересекающихся осей. Эта разновидность фрикционных передач особенно широко применяется в конструкциях винтовых прессов.  [c.262]

Он живо интересуется производством различных изделий, и в его записных книжках появляются эскизы и схемы изобретений, которые должны помочь зарождающейся промышленности цепные силовые передачи, станок для насечки напильников, многочисленные ткацкие машины. Не обошел он своим вниманием и машины энергетические. В его записях находим мы эскизы тепловых двигателей, он предлагает новый тип мельничного колеса — с вертикальным валом и закругленными ложкообразными лопастями, его перу принадлежит чертеж так называемой голландской ветряной мельницы.  [c.35]

Схема получения материала с дискретными волокнами состоит из операций смешения порошкового матричного материала с ме-ющи . определенную длину волокнами упрочнителя. При использовании металлического упрочнителя (нарезаемая определенной длины проволока) возможно применение обычных валковых мельниц и шаровых смесителей. Возможно перемешивание как всухую, так и с применением жидкостей, например спирта. При этом следует обратить внимание на возможность комкования волокон отдельно от порошковой фракции обычно это происходит в том случае, когда отношение длины к диаметру волокон составляет более ста. Получение хорошо перемешанной шихты с равномерным распределением волокон зависит от следующих факторов, устанавливаемых опытным путем 1) метода перемешивания  [c.151]

Недостатком размола в шаровых мельницах является загрязнение полученного продукта примесями, переходящими в него при истирании шаров. Этот недостаток почти устраняется в вихревой мельнице, схема устройства которой дана на рис. 34. Мельница состоит из закрытого корпуса 1, в кртором установлены два пропеллера 2, вращающиеся навстречу друг другу. При этом создаются два встречных воздушных потока. Материал для размола (мелкодробленая стружка или обрезки тонкой проволоки) поступает из бункера 3 в корпус мельницы, где измельчается. Частицы металла, падающие на дно, отсасываются вентилятором 4, приводимым во вращение электродвигателем 5, и подаются в воздушный сепаратор 6, где происходит классификация их по крупности. Мелкие частицы попадают в приемник готового продукта 7, откуда выгружаются по мере накопления, а более крупные частицы через бункер 3 снова возвращаются в корпус мельницы в цикл размола. В такой мельнице с помощью ударных бил (пропеллеров) ускоряется движение размельчаемых частиц и создается завихрение потока. При этом  [c.116]

Работа молотковых мельниц. Схема установки бил задается заводом-изготовителем. Била изготовляются из разных марок сталей и отбеленного чугуна. Срок службы бил в зависимости от материала, их наплавки и вида топлива — от 120 до 2 000 ч (120 ч — для подмосковиого и черемховского углей, била из стали Г2 и 45Л без ваплавки). Удельный расход электроэнергии для разных мельниц и топлив —в пределах от 4— 5 до 12—24 квт ч т. О величине загрузки топливом судят по нагрузке электродвигателя оптимальная производительность мельницы соответствует нагрузке электродвигателя, примерно в 1,4 раза превышающей мощность холостого хода мельницы. Для мельниц с центробежным сепаратором увеличение скорости воздуха на 40% увеличивает производительность мельницы примерно на 19% и снижает удельный расход электроэнергии на 22%, тонина помола при этом не из1меняется. В мельницах с гравитационным сепаратором с увеличением скорости воздуха укрупняется выдаваемая пыль и улучшается зерновой состав пыли в среднем показатель равномерности зернового состава пыли  [c.893]


Схемы 1—7 и 1—8 являются разновидностями схем 1—4 и 1—6, используются для доизмельчения продуктов обогащения. Применение этих схем позволяет уменьшить содержание в готовом продукте классов избыточной крупности при одинаковом содержании твердого и контрольного класса крупно-ети, получаемого в готовом продукте по схемам без контрольной классификации. Основ-ным1недостатком этих схем является высокое содержание готового продукта и влаги в песках контрольной операции классификации, что уменьшает эффективность измельчения нх в мельнице. Схема 1—9 с двухступенчатой классификацией (с нереклассифнкацней песков контрольной классификации совместно с питанием первой  [c.300]

Такое исследование имеет и практическое значение в связи с использованием в технологии упрочнения металлов ударпо-вол-НОБОЙ обработкой с применением взрывчатых веществ. Этот процесс называют упрочнением взрывом. Он приводит к существенному увеличению характеристик прочности и твердости металла, причем не только в слоях близ поверхности образца, па которую осуществлялось ударное воздействие, но и внутри него на значительной глубине ( 10 мм). Упрочнепие взрывом либо по схеме удара пластиной, разогнанной с помощью ВВ, либо но схеме накладного заряда ВВ применяется для обработки железподо-рол пых крестовин, ковшей экскаваторов, деталей камнедробилок, мельниц и т. д., т. е. деталей, подвергающихся в процессе эксплуатации сильным ударам и истиранию.  [c.283]

Тангенциальная компоновка (см. рис. 34, д) организует движение струй пылевоздушной смеси, вытекающих из амбразур горело , по касательной к условной окружности диаметром dy. Благодаря такой аэродинамике достигается хорошее заполнение факелом топки и исключается прямой удар потока в экраны. При одном вихре dy = (0,08 -ь 0,12) а,., а в случае образования двух вихрей dy = (0,04 ч- 0,06) а . Один вихрь могут создавать горелки, находящиеся по всему периметру. Число ярусов горелок 2я = I Ч- 4. Направление крутки потоков в ярусах одинаковое. Горелк - отдельных ярусов располагают одну над другой, создавая блок. В схемах с прямым вдуванием топлива число горелок должно быть кратным числу мельниц.  [c.73]

Наиболее простой схемой пылеприго-товления является индивидуальная с прямым вдуванием пыли в топку (рис. 20.1). Из бункера сырого угля дробленое топливо подается питателем на размол в мельницу. Сюда же поступает часть горячего воздуха (первичного). После сушки, размола и отделения грубых фракций в сепараторе готовая пыль с температурой 80—100°С транспортируется воздухом в горелки. Пылевоздушную смесь в пылепрово-дах часто называют аэропылью. Остальная часть горячего воздуха (вторичный воздух) также подводится к горелкам. Доля первичного воздуха (15—40%) зависит от выхода летучих из топлива и его влажности.  [c.182]

В схеме пылеприготовления с прямым вдуванием широко применяют молотковые мельницы (ММ) (рис. 20.1). ММ состоит из ротора и бронированного изнутри корпуса. Ротор мельницы снабжен молотками-билами, закрепленными на свободно качающихся билодержателях. Била являются основными утлеразмольными элементами с массой каждого до 8 кг. Частота вращения ротора — около 1000 об/мин.  [c.182]

В схеме приготовления п) 1ли с установкой любой из указанных мельниц топливо из бункера сырого угля специальны м питателем подается в мелыницу. Питатели сырого угля бывают дисковыми, ленточными, пла стинчатыми и скребковыми.  [c.326]

На рис. 7-20 изображены упрощенные схемы приготовления пыли в индивидуальных замкнутых системах с люлотковой мельницей (а), с мельницей-вентилятором (б), со среднеходной мельницей (в) и с шаровой барабанной мельницей (г ).  [c.328]

На каждой из схем стре (ками по,каза но направление движения топлива, воздуха, газов из топочной камеры и лылевоздушной смеси. Выбор схемы приготовления пыли и типа мельницы дан в табл. 7-2.  [c.328]

Схему пылеприготовления с молотковой мельницей и непосредственной подачей пцли в топку применяют для размола бурых углей, фрезерного торфа, горючих сланцев и в некоторых случаях мягких молодых каманных углей с выходом летучих на горючую массу более 30 /о-  [c.271]

Схематически компоновка мощной электрической станции (2400 Маг) представлена на рис. 35-3. На этой схеме показана котельная полуоткрытйго типа оборудозаная шахтными мельницами, предназначенными для размола мягкого угля. Топливо подается в бункера /5 котельных агрегатов IS при помощи ленточных транспортеров /7, с которых оно сбрасывается в бункер того или иного котла плужковыми сбрасывателями. Из бункеров 15 топливо скребковыми питателями 14 подается в шахтные мельницы 13. Первичный горячий воздух поступает в мельницы 13 по воздухопроводам 21. Пыле-воздушная смесь из мельниц к горелкам котла направляется по пылепроводам 20. Вторичный горячий воздух поступает к горелкам по воздухопроводам 19.  [c.452]

Изготавливают керамические элементы в определенной носледова-тельности. Можно указать три основных схемы технологических процессов (табл. 10.1). Наиболее простая, первая о ема предусматривает совместный помол с добавкой воды и одновременное смешивание всех сырьевых материалов в шаровых мельницах. Из полученной густой жидкой смеси — шликера Приготовляют жидкую, пластичную-или порошкообразную сухую массы для оформления заготовок, а также, изделий различными методами. К ним относятся литье водного шликера в гипсовые формы, горячее литье безводного шликера с органи-  [c.141]

На рис. 46, а показана индивидуальная схема пылеприготовле-ния с промежуточным бункером. Сырое дробленое топливо из бункера 1, пройдя через автоматические весы 2, поступает в питатель мельницы 3, регулирующий поступление топлива в мельницу 4. Шаровая барабанная мельница изнутри выложена броневыми плитами и на V4 объема заполнена стальными шарами диаметром 35—40 мм. Частота вращения барабана мельницы — 16— 25 об/мин. Шары, пересыпаясь, истирают уголь в пыль. В мельницу по воздуховоду 12 попадает горячий воздух с температурой 250—400° С. Подсушенное размолотое топливо горячим воздухом направляется в сепаратор 5, где крупные частицы топлива отделяются и ссыпаются в мельницу, а мелкая пыль поступает в циклон 6, в котором разделяются пыль и воздух. Пыль попадает в бункер 7, а воздух вентилятором 9 сбрасывается в пылеугольную горелку 10 топки Ц. Этот воздух является первичным. В трубопровод с первичным воздухом шнековым питателем 8 добавляется необходимое количество пыли из бункера 7.  [c.119]

Одной из тенденций современного тяжелого машиностроения является применение многодвигательных приводов машинных агрегатов с выходной мощностью более 2500, кВт. В связи с этим возникают проблемы равномерного распределения нагрузок между ветвями привода и обеспечения устойчивой работы агрегата в переходных режимах. В настоящей работе эти проблемы решаются применительно к двухдвигательиому машинному агрегату, с тихоходными синхронными электродвигателями. Такая схема привода применена в промышленности для вращения мощных цементных, угольных и рудоразмольных мельниц (рис. 1).  [c.104]

Рис. 11.73. Схема вибрационной шаровой мельницы с дебалансным приводом. От двигателя 1 с помощью муфты 2 движение сообщается валу 4 вибратора с дебалансами 6, возбуждающими колебания корпуса 3 мельницы, опирающегося на амортизаторы 7. Загруженные в корпус мелюгцие тела 5 и измельчаемый материал соударяются при колебаниях корпуса, материал дробится и измельчается. Рис. 11.73. Схема вибрационной <a href="/info/105367">шаровой мельницы</a> с дебалансным приводом. От двигателя 1 с помощью муфты 2 движение сообщается валу 4 вибратора с дебалансами 6, возбуждающими колебания корпуса 3 мельницы, опирающегося на амортизаторы 7. Загруженные в корпус мелюгцие тела 5 и измельчаемый материал соударяются при колебаниях корпуса, материал дробится и измельчается.

Руды Солнечного месторождения также были опробованы по двухстадиальной схеме (рис.5.11) обогащения. В этих опытах промпродукты и хвосты крупнее 0.2 мм частично были объединены и доизмельчены в стержневой мельнице, а часть продукта после первой стадии измельчения была выделена и доизмельчена в электроимпульсной установке. Конечные результаты обогащения приведены в табл.5.4.  [c.212]

Сравнительные технологические испытания проводились на примере сульфидной полиметаллической руды Лениногорского и флюоритовой руды Вознесенского месторождений. Подготовка проб к испытаниям проводилась по той же методике, как и для руд, обогащаемых гравитационными методами. Сульфидная руда крупностью 25-0 мм отобрана с транспортера питания мельниц Лениногорской обогатительной фабрики N 3. Часть руды согласно принципиальной схеме испытаний, представленной на рис.5.17, по механической схеме переработки дробилась в щековой дробилке ДЩ 150x80 до крупности - 3 мм, затем измельчалась в стержневой лабораторной мельнице периодического действия до крупности -250 мкм (соотношение Т Ж = 1 1.5 загрузка руды 1.5 кг, загрузка стержней 9 кг, время измельчения 21 мин.). Аналогичный помол руды принят на Лениногорской обогатительной фабрике для проведения процессов коллективной флотации  [c.218]

Исследования проведены на средней пробе текущей добычи медно-никелевой руды Ждановского месторождения класса -25+0 мм. Механическое измельчение проводили в лабораторной шаровой мельнице при Т Ж Ш = 1 0.5 6 в течение 40 мин. Электроимпульсное измельчение осуществляли в порционной камере с электродным устройством типа стержень-плоскость. В опытах 3, 4 (табл.5.10) электроимпульсное измельчение осуществляли с обострением фронта импульсов (Ск = 5500 пФ). Флотация проводилась в флотомашине типа "Механобр" емкостью 3 л по следующей схеме (рис.5.23). Реагенты ксантогенат (КС) и аэрофлот (АБ) подавались в процессе в пересчете на 100%-ю активность. Результаты опытов представлены в табл.5.10.  [c.232]


Смотреть страницы где упоминается термин Мельницы Схема : [c.253]    [c.125]    [c.233]    [c.236]    [c.252]    [c.29]    [c.264]   
Вибрации в технике Справочник Том 4 (1981) -- [ c.385 , c.386 ]



ПОИСК



Мельницы

Схема пыЛеприготовления с шахтными мельницами

Схемы водоочистки молотковыми мельницами

Схемы водоочистки с мельницами-вентиляторами

Схемы пылеприготовления с шаровыми барабанными мельницами



© 2025 Mash-xxl.info Реклама на сайте