Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Подшипники скольжения — Гидродинамический расчет

Рассмотрим упрощенный метод расчета зазоров и выбора посадок подшипников скольжения с гидродинамическим режимом работы. У гидродинамических подшипников смазочное масло увлекается вращающейся цапфой в постепенно сужающийся клиновой зазор между цапфой и вкладышем подшипника, в результате чего возникает гидродинамическое давление, превышающее нагрузку на опору. Цапфа всплывает (рис. 1.8). В месте наибольшего сближения цапфы и вкладыша образуется масляный слой толщиной h.  [c.17]


К расчетам на износостойкость можно также отнести расчет подшипников скольжения при гидродинамическом режиме трения и смазки — расчет, который должен обеспечить работу подшипника в условиях жидкостного трения. При этом виде трения рабочие поверхности деталей разделены слоем смазки и, таким об-  [c.20]

Характеристики смазочных материалов, применяемых для подшипников качения и скольжения, приведены в предыдущей главе. Так как вязкость масла существенно зависит от температуры, устанавливающейся внутри подшипника, то при гидродинамическом расчете опоры надо знать эту рабочую температуру, а также закон изменения вязкости, выражаемый вязкостно-температурными кривыми. На рис. 13.7 представлены такие кривые для некоторых марок масел, применяемых в редукторах общего назначения.  [c.391]

Подшипники скольжения — Гидродинамический расчет 438—444  [c.760]

Расчет подшипников скольжения сводится в основном к определению диаметра ц и длины / цапфы вала, а следовательно, и соответствующих размеров вкладыша. Существуют два основных метода расчета а) расчет на основе гидродинамической теории трения и смазки б) условный расчет.  [c.380]

Формулы (8-18) и (8-19) первоначально использовались для расчетов трения в подшипниках скольжения, пока не была разработана более точная гидродинамическая теория смазки, учитывающая эксцентричность расположения вала в подшипнике. Основы этой теории будут рассмотрены ниже. Тем не менее формулы (8-18) [и (8-19), предложенные Н. П. Петровым в 1883 г., сохраняют свое значение и в наше время, поскольку во многих конструкциях машин приходится встречаться со случаями вращения соосных цилиндров. Кроме того, эти формулы описывают предельный случай вращения вала в подшипнике при больших скоростях.  [c.335]

Расчет подшипников скольжения, работающих при жидкостной смазке, производится на основе гидродинамической теории смазки, которая основана на решении дифференциальных уравнений гидродинамики вязкой жидкости. Эта теория доказывает, что гидродинамическое давление может развиваться только в клиновом зазоре (см. эпюру на рис. 23.6). Толщина Н масляного слоя в самом узком месте (см. рис. 23.7) зависит от режима работы подшипника. Чем больше вязкость смазочного материала и угловая скорость цапфы, тем больше к. С увеличением нагрузки к уменьшается. При установившемся режиме работы толщина к должна быть больше суммы микронеровностей цапфы 61 и вкладыша 62  [c.317]


Расчет посадок с зазором. Для обеспечения долговечности подшипники скольжения должны работать в условиях жидкостного трения, когда смазка полностью отделяет цапфу вала от вкладыша подшипника. В этом случае зазор в подшипниках должен определяться на основе гидродинамической теории смазки.  [c.166]

Износ детали или сопряженной пары нередко характеризуется несколькими показателями. Важно выявить наиболее существенный из них по воздействию на работоспособность. На работу подшипника скольжения влияет не только увеличение зазора. Эллиптичность и другие искажения формы деталей в поперечных сечениях изменяют соотношение между кривизной соприкасающихся поверхностей, поэтому возможности реализации трения при жидкостной смазке становятся иными. Если с помощью гидродинамической теории смазки не представляет особого труда решить задачу о допустимом предельном зазоре в подшипнике при геометрически правильных поверхностях деталей, то расчет допустимых искажений формы представляет весьма сложную задачу. Надо прибегать к стендовым испытаниям, сочетая их с теоретической разработкой той или иной степени приближения.  [c.379]

I— Эквивалентная нагрузка 1.393— 399, 400 Подшипники скольжения — Гидродинамический расчет 1.438—444  [c.643]

Расчеты, связанные с выбором подвижных посадок, например при сопряжении цапф с подшипниками скольжения, осуществляются обычно на основе гидродинамической теории трения и заключаются в установлении необходимого зазора для обеспечения жидкостного режима трения.  [c.159]

Расчет посадок с зазором чаще всего осуществляется для подшипников скольжения, работающих в условиях жидкостного трения. Расчет производится на основе гидродинамической теории трения. Для подшипников конечной длины задача решается приближенно с введением ряда ограничений и использованием опытных данных. Ниже рассмотрен упрощенный метод расчета зазоров для подшипников скольжения при стабильных эксплуатационных условиях их работы.  [c.195]

Основные размеры подшипника скольжения, т. е. его диаметр d и длину I, выбирают в зависилюсти от удельного давления р (в предположении, что это давление распределяется равномерно по всей нагруженной части рабочей поверхности) и от произведения pv (см. Цапфы, оси и валы , стр. 104). Для всех более нагруженных подшипников необходимо проводить подробный расчет согласно гидродинамической  [c.174]

Гидродинамические радиальные подшипники скольжения, работающие в стационарном режиме. Круглоцилиндрические подшипники. Функции, используемые для расчета. Разработка ГОСТ. (ИСО 7902-2-98). Прямое  [c.181]

Подшипники скольжения, предназначенные для восприятия радиальных и осевых (подпятники) нагрузок и работаюш,ие в режиме смешанного или граничного трения, рассчитывают по условной методике на износостойкость и нагрев (табл. 3.44). При жидкостном трении расчет ведут на основе гидродинамической теории смазки, здесь этот расчет не рассматривается.  [c.375]

Расчет подшипников скольжения на основе гидродинамической теории смазки заключается в определении минимально допустимого зазора между валом и подшипником, при котором сохраняется надежное жидкостное трение. Расчет обычно производится на режиме максимальной мощности. Минимальный слой смазки в подшипнике по гидродинамической теории смазки  [c.370]

Основоположником гидродинамической теории трения, имею-ш,ей важное значение при расчете подшипников скольжения в зависимости от характера их смазки, является проф. Н. П. Петров. Акад. С. А. Чаплыгин развил дальше гидродинамическую теорию трения.  [c.5]

При расчете неподвижные посадки подбирают исходя из следующих условий при наименьшем натяге соединение должно передавать действующие нагрузки, а при наибольшем натяге в материале соединяемых деталей не должны возникать остаточные деформации. Для подшипников скольжения зазор между цапфой и вкладышем подшипника определяют из расчета, основанного на гидродинамической теории смазки. Зазор в опоре должен обеспечивать полное разделение маслом трущихся поверхностей при заданном режиме работы опоры. По расчет-ному значению зазора подбирают стандартную посадку.  [c.102]


Режим жидкостного трения удается получить при правильном проектировании и тщательном изготовлении подшипника. Расчет подшипников скольжения, работающих при жидкостном трении, производится на основе гидродинамической теории смазки , которая основана на решении дифференциальных уравнений гидродинамики вязкой жидкости. Эта теория доказывает, что гидродинамическое давление может развиваться только в клиновом  [c.320]

Режим жидкостной смазки удается получить при правильном проектировании и тщательном изготовлении подшипника. Расчет подшипников скольжения, работающих при жидкостной смазке, производится на основе гидродинамической теории смазки, которая основана на решении дифференциальных уравнений гидродинамики вязкой жидкости. Эта теория доказывает, что гидродинамическое давление может развиваться только в клиновом зазоре (см. эпюру на рис. 18.6). Толщина /г масляного слоя в самом узком месте (см. рис.  [c.210]

Условный рас чет подшипников скольжения производят для подшипников работающих в условиях граничного трения, когда трущиеся поверхности гарантированно не разделены слоем смазки, а на рабочей поверхности вкладыша имеется лишь тонкая масляная пленка, которая может разрушаться. Этот расчет производят для обеспечения износостойкости и отсутствия заедания. Для подшипников жидкостного трения производят специальный расчет, основанный на гидродинамической теории смазки.  [c.308]

Гидродинамические расчеты подшипников скольжения производят в форме проверочных. Геометрические размеры цапф определяют из расчета валов или из условных расчетов подшипников (см. стр. 466).  [c.475]

Конструкция соприкасающихся элементов. Она определяется в общих чертах машиной, для которой предназначается соответствующая трущаяся пара, но тип подшипника (скольжения, качения), как и систему питания, охлаждения и т.д. можно выбирать при проектировании и учитывать их при расчете. Макрогеометрия поверхностей, их непрерывность или прерывистость также характерны для различных конструкций. Их выбор тесно связан и с возможным режимом смазки. С этой точки зрения различаются подшипники с гидродинамической  [c.33]

ГИДРОДИНАМИЧЕСКИЙ РАСЧЕТ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ  [c.265]

Гидродинамический расчет подшипника скольжения (по Данным примера 3)  [c.285]

Последовательность гидродинамического расчета подшипника. Все величины, входящие в приведенные расчетные формулы, взаимосвязаны, изменение каждой из них отражается на других. Поэтому при проектировании опор скольжения в новых конструкциях машин применяют метод подобия, т. е. выбирают соотношения параметров такие же, как и в аналогичных выполненных конструкциях, с уч гом технологических и эксплуатационных особенностей разрабатываемой опоры.  [c.390]

Области применения подшипников скольжения, работающих в условиях гидродинамической смазки, уравнения, результаты расчетов и критерии работоспособности  [c.193]

В табл. 6.3 и на рис. 6.11 приведены результаты расчетов определения гидродинамических характеристик средненагруженного подшипника скольжения, имеющего угол охвата Q = 360° и относительную ширину B/Z) = 1,0.  [c.198]

Ниже рассматривается упрощенный метод расчета зазоров и выбора посадон для подшипников скольжения с гидродинамическим режимом работы  [c.283]

Жесткость валов, вращающихся в не-самоустана вливающихся подшипниках скольжения, должна быть достаточной, чтобы обеспечить необходимую равномерность распределения давления по длине подшипников. Расчет валов и подшипников в совместной работе при рассмотрении задачи как контактной и как гидродинамической приводится в специальной литературе. Применяют также упрощенные расчеты, в которых допустимый угол упругой линии вала в опоре (в радианах) выбирают равным минимальному диаметральному зазору в подшипнике, деленному на длину подшипника. Эти расчеты не могут считаться достаточно обоснованными, так как контактные деформации и упругие углы поворота корпусов соизмеримы с зазорами в подшипниках.  [c.331]

Расчет и выбор посадок с зазором в подшипниках скольжения. Наиболее распространенным типом ответственных подвижных соединений являются подшипники скольжения, работающие со смазочным материалом. Для обеспечения наибольшей долговечности необходимо, чтобы при работе в установившемся режиме износ подшипников был минимальным. Это достигается при жидкостной сма.зке, когда поверхности цапфы и вкладыша подшипника полностью разделены слоем смазочного материала. Наибольшее распространение имеют гидродинамические подшипники, в которых смазочный материал увлекается враш,ающейся цапфой в постепенно сужаю-ш,ийся (клиновой) зазор между цапфой и вкладышем подшипника, в результате чего возникает гидродинамическое давление, превышающее нагрузку на опору и стремящееся расклинить поверхности цапфы и вкладыша. При этом вал отделяется от поверхности вкладыша и смещается по направлению вращения. Когда вал находится (штриховая линия на рис. 9.5) в состоянии покоя, зазор S = D — d. При определенной частоте вращения вала (остальные факторы постоянны) создается равновесие гидродинамического давления и сил, действующих на опору. Положе1ше вала в состоянии равновесия определяется абсолютным е и относительным "/ = 2e/S эксцентриситетами. Поверхности цапфы и вкладыша подшипника при этом разделены переменным зазором, равным /i ,m в месте их наибольшего сближения и Апих = S —/гп,т на диаметрально противоположной стороне. Наименьшая толщина масляного слоя /г и, связана с относительным эксцентриситетом % зависи.мостью  [c.212]


Расчеты подшипников скольжения для работы в условиях граничного трения — условный расчет по допукаемым давлениям или по произведению pv, для работы в режиме жидкостного трения — гидродинамический расчет для быстроходных подшипников — тепловой расчет качения — для статически нагруженных по допускаемой статической нагрузке для вращающихся под нагрузкой — на долговечность.  [c.145]

Примечания 1. Обычные условия применения. 2. Условия, характеризующиеся наличием гидродинамической пленки масла между контактирующими поверхностями колец и тел качения (Л>2,5) и пониженных перекосов в узле. 3. Когда кольца и тепа качения изготовлены из сталей повышенного качества (электрошлаковой или вакуумной) и подшипники работают в условиях наличия гидродинамической плевки масла и пониженных перекосов в узле. 4. Решение задачи гидродниамической теории смазки для подшипников качения слошее, чем д.ля подшипников скольжения, и здесь не рассматривается. Формула для расчета параметра режима смазки Л приведена в [27].  [c.357]

Выбор различных посадок для подвижных и неподвижных соединений можно производить на основании предварительных расчетов, экспериментальных исследований или ориентируясь на аналогичные соединения, условия работы которых хорошо известны. Расчеты, связанные с выбором подвижных посадок, например при сопряжении цапф с подшипниками скольжения, осуществляются обычно на основе гидродинамической теории трения и заключаются в установлении необходимого зазора для обеспечения жидкостного трения. В других случаях зазоры могут рассчитываться по условию компенсации отклонений формы и расположения поверхностей для обеспечения беспрепятственной сборки деталей. Возможны также расчёты по условиям обеспечения необходимой точности перемещений деталей или фиксации их взаимного расположения, расчеты зазоров для компенсации температурных деформаций деталей и т. п. Расчеты, связанные с выбором посадок в неподвижных соединениях, сводятся к определению прочности соединения, напряжений и деформаций сопрягаемых деталей, а также к определению усилий запрессовки и распрессовки. В результате тех или иных расчетов необходимо получить допустимые наибольшие и наименьшие значения расчетных зазоров [5rnaxi, [Sm, 1 или расчегных натягов (Л/ шЕкЬ ЛТшт .  [c.299]

К о д н и р Д. С., Б а й б о р о д о в Ю. И. Расчет неметаллических подшипников скольжения на основе контактно-гидродинамической теории смазки. Сб. Применение полимерных материалов в машиностроении . Киев. НТОмашпром, 1966.  [c.241]

Общие соображения Существует два осовных метода расчета подшипников скольжения а) расчет, основанный на гидродинамической теории трения и смазки б) условный расчет, применяемый к подшипникам, работающим при режиме граничного трения, когда трущиеся поверхности не разделены слоем смазки, а на рабочей поверхности вкладыша имеется лишь тонкая адсорбированная масляная пленка. Условный расчет иногда используют в качестве предварительного, ориентировочного расчета для подшипников, рассчитываемых затем по гидродинамической теории. Его применяют также для обеспечения износостойкости подшипников скольжения при переходных режимах (при пуске в ход и остановке машины), когда трущиеся поверхности не разделены масляным слоем достаточной толщины. Расчет подшипников, работающих в режиме жидкостного трения, рассмотрен в следующем параграфе, здесь остановимся на условном расчете.  [c.388]

Профессор Н. П. Петров является осиовоноложнпком гидродинамической теории смазки (теории работы масляного слоя между трущимися поверхностями). В настоящее время эта теория является не только основой расчета подшипников скольжения, но распространяется на зубчатые и червячные передачи, роликовые подшипники и другие детали, работающие со смазкой.  [c.9]

При движении плоской пластины А (рис. 13.6, а) относительно плоской поверхности Б в смазочном слое, разделяющем эти поверхности, возникают гидродинамические силы, зависящие от относительной скорости, вязкости смазочного материала и толщины его слоя. Для ламинарного потока вязкой жидкости эта зависимость описывается обобщенным уравнением Рейнольдса. Применительно к расчету подшипников скольжения в условиях жидкостной смазки вводят следующие упрощения движение пластины — установившееся с постоянной скоростью в направлении оси Ох, т. е. принимают U = onst, К=0 и W = 0. Течение смазки в направлении оси Oz от-  [c.383]


Смотреть страницы где упоминается термин Подшипники скольжения — Гидродинамический расчет : [c.335]    [c.53]    [c.301]    [c.341]    [c.149]   
Справочник металлиста. Т.1 (1976) -- [ c.438 , c.444 ]

Справочник металлиста Том5 Изд3 (1978) -- [ c.438 , c.444 ]

Справочник металлиста Том 1 Изд.3 (1976) -- [ c.438 , c.444 ]



ПОИСК



660 — Расчет скольжения

Гидродинамический расчет

Да гидродинамическое

Подшипники Расчет

Подшипники Расчет гидродинамически

Подшипники Расчет гидродинамический

Подшипники расчета 264 — Расчет

Подшипники скольжения

Подшипники скольжения —Гидродинамический расчет смазке

Расчет подшипников скольжения



© 2025 Mash-xxl.info Реклама на сайте