Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медь и ее сплавы — Свойства

Общие свойства меди и ее сплавов. Медь, помимо широкого применения в технике по причине ее высокой электропроводности, используется в химическом машиностроении в качестве конструкционного материала для изготовления разнообразной химической аппаратуры и в особенности теплообменной аппаратуры (выпарные аппараты,теплообменники,конденсаторы, испарители, змеевики и т. п.). Объясняется это высокой теплопроводностью меди и ее сплавов, их благоприятными физико-механическими свойствами при достаточно высокой  [c.245]


При сварке меди и ее сплавов получение качественного шва — без пор, с требуемыми физическими свойствами — весьма затруднительно. Это связано с наличием в исходном металле закиси меди и высокой склонности меди к поглощению водорода. Возможна сварка меди и ее сплавов в защитных газах — аргоне и гелии, а также в азоте, который по отношению к этому металлу является инертным газом. Сварку ведут неплавящимися электродами — вольфрамовым и угольным (не для всех марок меди) на постоянном токе прямой полярности с подачей присадочной проволоки.  [c.388]

Высокие пластические свойства меди и ее сплавов позволяют получать из них полуфабрикаты и изделия весьма сложного профиля, разнообразной толщины, размеров и т. д. Медные сплавы немагнитны.  [c.199]

Характеристики физических и механических свойств меди и ее сплавов приведены в табл. 1, 2 и 3. Дефицитность меди привела к созданию ряда заменителей, т. е. сплавов меди и железа. Эти сплавы подразделяются на 4 группы а) медистое железо (до 20% Си) б) медистая сталь (до 33% Си) в) промежуточные сплавы (до 45% Си) г) железная бронза 50—60 Си (и более).  [c.194]

Условное обозначение марок цветных металлов и их сплавов (156). Медь и ее сплавы (157). Примерное назначение меди (158). Сводная таблица сортамента полуфабрикатов из меди (159). Химический состав латуней (160). Примерное назначение латуней (162). Сводная таблица сортамента полуфабрикатов из латуни (163). Химический состав бронз (164). Механические свойства бронз (166). Примерное назначение бронз (166). Сводная таблица сортамента полуфабрикатов из бронзы (169).  [c.534]

Поэтому во многих отраслях техники дли изделий, работающих в условиях повышенных и криогенных температур, в качестве основного металла широко применяются медь и ее сплавы, имеющие необходимый комплекс свойств. Пайка этих материалов может производиться всеми известными способами.  [c.249]

Медь и ее сплавы — Свойства 249  [c.389]

Медь и медные сплавы имеют высокую электропроводимость и теплопроводность. В технологическом отношении медь и ее сплавы характеризуются высокими пластическими свойствами. В большинстве случаев медные сплавы пластически деформируются в холодном состоянии.  [c.464]

Сварка меди и ее сплавов существенно отличается от сварки сталей в силу различия теплофизических и химических свойств этих металлов.  [c.263]


Оловянные бронзы имеют высокие антифрикционные свойства и коррозионную стойкость. Бронзы алюминиевые и кремнистые обладают высокими механическими свойствами и коррозионными свойствами, дешевле оловянных. Марганцовистые бронзы имеют хорошую коррозионную стойкость и повышенную жаропрочность. Бериллиевые бронзы после термообработки приобретают прочность, сопоставимую с прочностью стали. Химический состав типовых марок меди и ее сплавов приведены в табл. 12.8.  [c.454]

Медь и ее сплавы легированные стали и сплавы с особыми свойствами Вставки в места интенсивного термогидродинамического износа, металлические стержни  [c.262]

После оксидирования поверхность изделий натирают медью или медными сплавами в среде глицерина. На поверхности в результате схватывания и переноса формируется равномерное покрытие из меди и ее сплавов, которое предотвращает схватывание и заедание поверхностей и улучшает антифрикционные свойства изделий.  [c.149]

Чистая медь и ее сплавы не являются жаростойкими материалами однако в некоторых случаях они применяются при повышенных температурах, когда от конструкции требуется повышенная электропроводность или теплопроводность. Используется медь с низким содержанием кислорода (<<0,04 %). Когда требуется прочность изделия, то вводится мышьяк (0,4 %). Добавки d (1,0 %), Сг (0,3 %) и Ag (0,1 %) также улучшают механические свойства меди при повышенных температурах, причем электропроводность при этом остается практически без изменения.  [c.221]

Технически чистая медь имеет невысокие прочностные свойства. При снижении температуры от 293 до 20 К прочность и твердость меди повышаются почти в два раза, пластичность сохраняется на том же уровне. Ударная вязкость даже увеличивается, сохраняя при 20 К столь высокие значения, что надрезанные образцы не разбиваются копром, а протягиваются между его опорами. Усталостная прочность меди и ее сплавов с понижением температуры растет так же, как модуль упругости и модуль сдвига.  [c.622]

Механические свойства меди и ее сплавов приведены в табл. 13.23.  [c.622]

Медь и ее сплавы являются традиционными материалами, используемыми в технике низких температур. Применение меди и ее сплавов обусловлено их высокими характеристиками механических свойств при низких температурах, хорошей коррозийной стойкостью и высокой теплопроводностью.  [c.722]

Для производства эфиров обычно используется полученная лесохимическим способом уксусная кислота-сырец, обладающая более активными коррозионными свойствами, в частности к меди и ее сплавам, чем чистая кислота. Концентрация серной кислоты составляет 76—78% и 92—94%. Серная кислота 76— 78%-НОЙ концентрации обладает высокой коррозионной активностью по отношению к черным металлам, поэтому при ее применении необходимы защитные футеровки (большей частью силикатные).  [c.125]

А2.3.3. Медь и ее сплавы. Техническая медь в машиностроении применяется исключительно для изготовления деталей, от которых требуется высокая теплопроводность и (или) высокая коррозионная стойкость в разных агрессивных средах (например в морской воде), кроме сернистого газа и аммиака. В зависимости от содержания примесей, существенно влияющих на свойства, различают медь марок МОО, МО, Ml, М2, М3, М4.  [c.57]

Развитие авиации, ракетостроения, увеличение мощности и повышение рабочих скоростей машин предъявляют возрастающие требования к металлическим материалам. Путь к повышению прочности металлов лежит в повышении их чистоты, уменьшении содержания примесей, ухудшающих механические свойства металла. Одной из таких вредных примесей является водород, который, проникая в металл уже в процессе его плавки, вызывает появление флокенов в стали, водородной болезни в меди и ее сплавах, пористости алюминия и его сплавов и т. д. Следующими стадиями технологического процесса обработки стали, сопровождающимися поглощением водорода, являются термическая обработка, сварка, травление в растворах кислот и занесение гальванических покрытий. Нанесение гальванопокрытий является, обычно, завершающей технологической операцией, которой подвергается большинство деталей из разных сортов сталей для предохранения их от коррозии, повышения стойкости к истиранию (хромирование) и т. д. Как показывает практика, особенно опасным является наводороживание сталей, прежде всего высокопрочных, в процессе нанесения гальванопокрытий и подготовительных операциях (обезжиривание, травление).  [c.3]


Изменение свойств различных металлов при изменении температуры и напряженности магнитного поля. Распределение тока в материале токопроводов и нагреваемой детали, а также мощности существенно зависит от свойств материала — магнитной проницаемости и удельного электрического сопротивления. Магнитная проницаемость материала определяется температурой и напряженностью магнитного поля, а удельное электрическое сопротивление — температурой. Абсолютная магнитная проницаемость Лд многих материалов, таких, как медь и ее сплавы, алюминий и его сплавы, титан, стали аустенитного класса и др., близка к значению абсолютной магнитной проницаемости вакуума =4я-10" Г/м. Относительная магнитная проницаемость этих материалов [X = близка к единице (несколько больше единицы для парамагнитных и несколько меньше единицы для диамагнитных материалов) и практически не зависит от напряженности Магнитного поля.  [c.13]

Помимо основных компонент в порошкообразные материалы вводят пигменты и красители, придающие покрытию термостойкость и другие свойства. В частности, для усиления адгезии к стали порошков полиэтилена и образующейся затем пленки вводят в исходный порошок графит или полистирол [182]. Если адгезив формируется из порошка поливинилбутираля, то добавляют окись хрома. Адгезию порошков, изготовленных из полиамидных смол, к алюминиевым поверхностям, а также к меди и ее сплавам (латунь, бронза) можно усилить путем введения в исходный продукт ультрамарина и алюминиевой пудры. Для закрепления частиц к пластмассовым изделиям используют растворитель, сообщающий поверхности липкость.  [c.234]

Сводные таблицы по коррозионным свойствам меди и ее сплавов в различных средах приведены на стр. 290—299 (табл. 3.7— 3.10)  [c.274]

Медь и ее сплавы известны человечеству с древнейших времен и находят широкое применение в современной технике. Медь отличается многими весьма ценными техническими свойствами исключительно высокой электропроводностью, теплопроводностью, пластичностью и стойкостью против окисления. Всякие примеси понижают электропроводность меди. Чистая медь прекрасно прокатывается и протягивается в тонкую проволоку. Поэтому чистая медь является основным материалом, из которого изготовляются электрические провода. Наиболее вредные примеси, ухудшающие обрабатываемость меди, — висмут и сурьма.  [c.222]

Серебряные покрытия обладают высокой химической стойкостью и наилучшей электропроводностью в течение длительного срока службы они прочны по сцеплению с основным металлом, хорошо смачиваются большинством электровакуумных припоев и легко паяются. Нанесенные на хорошо обработанную поверхность меди и ее сплавов, а также деталей из других металлов и сплавов с подслоем меди они резко понижают потери высокочастотной энергии в приборах СВЧ и обеспечивают высокие стабильные электроконтактные свойства внешних деталей. Эта качества обусловили их очень широкое применение, особенно в приборах СВЧ.  [c.146]

При сварке меди и ее сплавов необходимо учитывать некоторые свойства меди и компонентов, входящих в ее сплавы (цинка, олова).  [c.497]

Вакуумная керамика представляет собой группу радиотехнических керамических материалов с большой плотностью (вакуум-плотностью), хорошими термомеханическими свойствами и низкими значениями диэлектрических потерь в широком интервале температур и частот (табл. II. 45). Свойства вакуумной керамики, применяемой внутри вакуумных приборов, определяются ГОСТ 5458-57, класс VI (см. табл. II. 47). Вакуумная керамика должна давать вакуум-плотные спаи с медью, железом и их сплавами. Коэффициент линейного расширения керамики в интервале температур 20—90° С должен составлять для спаев с медью и ее сплавами (13 Ч- 15) 10 , для спаев с железом и его сплавами (10 -г 11) 10 , для спаев с коваром (6 7) 10 . Однако полного совпадения коэффициента линейного расширения металла и керамики не всегда удается достигнуть.  [c.299]

ГМЗ-МТ — 1100 600. 700 0,01-0,03 17-20 Повышенные прочностные свойства. меньшая проницаемость. Применяется для плавки меди и ее сплавов  [c.12]

Окружная скорость кругов или ленты зависит от свойств обрабатываемого металла и составляет для черных металлов и никеля 30 м сек, для меди и ее сплавов 25 м сек, для алюминия, цинка и олова 20 м/сек.  [c.68]

За последнее время получило значительное применение новое самостоятельное защитно-декоративное покрытие, представляющее собой сплав примерного состава 45% 5п и 55% Си, известное под названием белой бронзы . Это покрытие отличается целым рядом ценных свойств, однако дальнейшему распростр -нию его препятствует то обстоятельство, что мировая добыча олова не полностью удовлетворяет потребность в нем. По своему внешнему виду электроосажденные меднооловянные сплавы указанного состава занимают промежуточное положение между никелем и серебром, больше приближаясь к последнему. Твердость осадка из белой бронзы средняя между никелем и хромом. Покрытия из белой бронзы хорошо сопротивляются атмосферной коррозии в отл1ичие от серебра этот сплав не тускнеет под действием сернистых соединений. Покрытые белой бронзой изделия хорошо паяются. Сплав может быть осажден непосредственно на сталь, так же как на изделия из меди и ее сплавов. Перечисленные свойства предопределяют область применения покрытий из белой бронзы (столовые приборы, ресторанная по-  [c.154]

Одним из методов борьбы с газовой коррозией меди и ее сплавов является легирование их магнием, алюминием, кремнием и др. Наиболее широко применяются при высоких температурах алюминиевые бронзы с содержанием алюминия до 10% и бернллневые бронзы (2,5% Ве). Эти бронзы жаростойки до 300° С. На латунях с содержанием цинка выше 20% образуется защитная пленка ZnO, которая при высоких температурах об-лада< т хорошими защитными свойствами.  [c.255]


При кристаллизации под механическим давлением в результате большой скорости затвердевания, устранения газовой и усадочной пористости, измельчения структуры и уплотнения заготовок механические свойства меди и ее сплавов повышаются, но до определенного предела (рис. 64), при превышении которого они почти не повышаются. Для меди марки М3 этот предел соответствует 120—150 МН/м [86], для бронзы типа Си—10% Sn 50 МН/м [79], для меди Ml, латуни ЛМцА57-3-1 и бронзы Бр. АЖ9-4Л 150—200 МН/м значения оптимального давления близки к указанным выше и для других сплавов.  [c.126]

Медь и ее сплавы имеют высокую степень пластичности и хорошие электро- и термопроводность — свойства, которые существенно влияют на их выбор в качестве покрытий. Если медь используется как гальваническое покрытие, то в результате высокой степени выравнивания может быть снижено качество полирования основного металла перед нанесением покрытия.  [c.114]

Покрытия из меди и ее сплавов. Медные покрытия цаносят на детали в основном методами электроосаждения или химического восстановления из растворов. Эти покрытия имеют высокие защитные свойства благодаря наличию темной окисной поверхностной пленки. Скорость коррозии медных покрытий составляет 0,2— 0,6 мкм/год в сельской местности и 0,9—2,2 в промышленной атмосфере [13].  [c.89]

Медь и ее сплавы наряду со сплавами железа широко использовались человеком с древних времен. Медь имеет положительное значение термодинамического потенциала по отношению к обратимому водородному электроду (-f0,52 В для u u+ и +0,35 В для u- - u +) и поэтому обладает высокой коррозионной стойкостью в атмосферных условиях, в пресной и в морской воде при небольшой скорости движения, в большинстве кислот, кроме окислительных, в ряде органических соединений. Опасно для меди присутствие в атмосфере и в воде примесей аммиака и его производных. Важным свойством меди и ее сплавов, определившим их широкое применение в морских условиях, наряду с хорошей коррозионной стойкостью является неподверженность биологическому обрастанию в морской воде. Технически чистая медь марок МО—М4, отличающихся различ-  [c.71]

В качестве легирующей добавки к чугуну и стали (в частности, коррозионностойкой), улучшающей их структуру, свойства и обрабатываемость к цветным металлам и сплавам, таким как РЬ, 5п, Си и их сплавы, улучшающей их свойства. Например, свинец, легированный 0,05 — 0,1 % Те, обладает повышенными механическими и антикоррозионными свойствами, применяется в кабельной промышленности. Добавки теллура к меди и ее сплавам улучшают их обрабатываемость и теплостойкость. Малые добавки (0,1 —1,0% Те) к оловянистым сплавам, в частности антифрикционным, повышают их твердость, прочность и р аботоспособность  [c.347]

Применение аминов в чистом виде ограничивается в одних случаях высокой летучестью (моноэтаноламин, циклогексиламин), в других — нелетучестью и низкой растворимостью (октадецил-амин). Температурные пределы адсорбции и десорбции различных аминов также различны, что затрудняет их применение в чистом виде. Поэтому амины чаще всего применяют в виде солей с анионами, усиливающими защитное действие или ослабляющими нежелательные свойства аминов. Так, например, превращение моноэта-ноламина и циклогексиламина в карбонаты позволяет несколько снизить их летучесть. Применение нитрита циклогексиламина вместо амина позволяет сочетать защитное действие амина с пассивирующим действием нитрит-иона, что придает ингибитору высокую эффективность. Несмотря на высокую эффективность аминов для защиты черных металлов, большинство из них являются стимуляторами коррозии многих цветных металлов, особенно меди и ее сплавов. Поэтому для создания ингибиторов, защищающих одновременно черные и цветные металлы, необходимо нейтрализовать действие аминов, стимулирующих коррозию цветных металлов. Принципиальная возможность этого была ранее доказана при защите цинка тетраборатом моноэтаноламина [7].  [c.81]

Оловянно-свинцовые припои применяют в различных отраслях промышленности при низкотемпературной пайке сталей, никеля, меди и ее сплавов. Они обладают высокими технологическими свойствами, пластичны и при выполнении пайки не требуют дорогостоящего оборудования и сложных способов пайки. Пайку оловянносвинцовыми припоями производят обычно при нагреве паяльником, В зависимости от содержания в припоях олова изменяются свойства и температура плавления (рис. 18), Минимальной температуры плавления (183,3 °С) достигают при содержании в сплаве 61,9% Sn. Этот припой имеет эвтектическую структуру, весьма пластичен, обладает высокими технологическими свойствами.  [c.86]

При автоматической сварке меди и ее сплавов плавящимся электродом (ГОСТ 9087—69) применяют кислые флюсы АН-348, ОСЦ-45, АН-20С, АН-26С и др. Их использование приводит к тому, что в металл шва переходят Si и Мп, в результате чего ухудшаются тепло- и электрофизические свойства соединений по сравнению с основным металлом. Применение бескислородных фторидных флюсов, например флюса марки АН-М1, который содержит 55 % Mgp2, 40 % NaF и 5 % BaFj (по массе), позволяет получать швы, удельное электросопротивление которых в 1,5 раза ниже, а теплопроводность в 2 раза выше по сравнению со швами, выполненными под кислым флюсом АН-348А. Возможно использование и керамических флюсов (ЖМ-1).  [c.267]

Вредными примесями, снижающими механические и технологические свойства меди и ее сплавов, являются висмут, свинец, сера и кислород. Висмут и свинец почти нерастворимы в меди и образуют легкоплавкие эвтектики по границам зерен, что снижает способность к пластической деформации. Сера и кислород образуют с ме- ью хрупкие эвтектики Си— ujS и Си—Си О, которые располага-  [c.110]

Все примеси, особенно входящие в твердый раствор, снижают электропроводность меди. Наиболее сильно уменьшают электропроводность примеси Р, As, А1, Sn. Вредными примесями, снижающими механические и технологические свойства меди и ее сплавов, являются Bi, РЬ, S и О. Свинец и висмут ничтожно растворимы в меди и образуют по границам зерен легкоплавкие эвтектики, что приводит к красноломкости. Сера и кислород также нерастворимы в меди и образуют эвтектики Си—СигЗ и Си—СигО, но краснолом-  [c.723]

Нерастворимые элементы РЬ и Bi ухудшают механические свойства меди и однофазных сплавов на ее основе. Образуя легкоплавкие эвтектики (соответственно при 326 и 270 °С), располагаюш иеся по границам зерен основной фазы, они вызывают красноломкость. Причем вредное влияние висмута обнаруживается при его содержании в тысячных долях процента, поскольку его растворимость ограничивается 0,001 %. Вредное влияние свинца также проявляется при малых его концентрациях (< 0,04 %). Висмут, будучи хрупким металлом, охрупчивает медь и ее сплавы. Свинец, обладая низкой прочностью, снижает прочность медных сплавов, однако вследствие хорошей пластичности не вызывает их охрупчивания. Кроме того, свинец улучшает антифрикционные свойства и обрабатываемость резанием медных сплавов, поэтому его применяют для легирования. 3. Нерастворимые элементы О, S, Se, Те присутствуют в меди и ее сплавах в виде промежуточных фаз (например, СигО) СигЗ), которые образуют с медью эвтектики с высокой температурой плавления и не вызывают красноломкости. Кислород при отжиге меди в водороде вызывает водородную болезнь , которая может привести к разрушению металла при обработке давлением или эксплуатации готовых деталей.  [c.303]

Среди европейских фирм, производящих СОТС, представляет также интерес " lvlT Интернешнл" (Швейцария). Ассортимент производашых фирмой СОТС для резания металлов невелик (около 30 наименований). Водосмешиваемых композиций в ассортименте около 2/5, но в основном (2/3) это синтетические и полусинтетические продукты со специальны-присадками, усиливающими смазочные свойства и стойкость к поражению микроорганизмами. Масляные СОТС представлены на 95fo продуктами со средней и малой вязкостью. От 50 до 70 - масляных СОТС относится к группе активных по отношению к меди и ее сплавам.  [c.40]


Крепежные элементы. Болты, которые удовлетворили бы всем требованиям конструктора, не выпускаются ни одним из производителей. При выборе крепежных элементов учитывают создаваемую ими силу предварительного сл атия соединяемых деталей, их массу, выступ головки над поверхностью детали, достигаемую прочность соединения, условия окружающей среды при эксплуатации соединения, стоимость и другие факторы. Для максимальной реализации свойств ПМ в изделии в общем случае рекомендуют использовать специальные болты, отличающиеся от болтов для металлов как конструкцией, так и материалом. Для соединения деталей из стеклопластиков, а именно с них началось развитие механического крепления деталей из ПКМ, применяют стандартные болты из сплавов алюминия, углеродистой стали, меди и ее сплавов, а для тяжело нагруженных соединений — болты из легированной стали (например, марки ЗОХГСА). Для повышения коррозионной устойчивости стальной крепеж иногда покрывают кадмием, цинком, никелем или хромом [91].  [c.192]

Анодно-окисные покрытия на меди и ее сплавах. Цвет покрытия — черный. По сравнению с химическим окисным покрытием обладает лучшими защитными и механическими свойствами. Применяется для получения светопоглощающих покрытий.  [c.573]


Смотреть страницы где упоминается термин Медь и ее сплавы — Свойства : [c.389]    [c.626]    [c.26]    [c.50]    [c.40]   
Справочник по пайке Изд.2 (1984) -- [ c.249 ]



ПОИСК



Диаграммы состояния и свойства сплавов медь — цннк и медь — олово

Медиана

Медь и ее сплавы состав и свойства

Медь и сплавы

Медь и сплавы меди

Медь и сплавы механические свойства

Медь — Свойства

Основные марки, структура и механические свойства сплавов меди

Применение серебряные — Диаграмма состояния сплавов системы медь—серебро 70 Применение 70, 74 — Свойства 70—74 — Химический состав

Свойства и применение меди. Медные сплавы. Медноникелевые сплаПолуфабрикаты из меди, латуни и бронзы

Свойства и применение сплавов меди при низких температурах

Свойства медно-цинковые — Диаграмма состояния сплавов системы медь—цинк 59Марки 60—63 — Применение 61 — Свойства 60—63 — Химический состав

Свойства металла электродов для меди и ее сплавов



© 2025 Mash-xxl.info Реклама на сайте