Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства и применение сплавов меди при низких температурах

Свойства и применение сплавов меди при низких температурах  [c.274]

Медь и ее сплавы являются традиционными материалами, используемыми в технике низких температур. Применение меди и ее сплавов обусловлено их высокими характеристиками механических свойств при низких температурах, хорошей коррозийной стойкостью и высокой теплопроводностью.  [c.722]

Кроме того, для сплавов на основе меди характерна нестабильность температур превращения и свойств ЭПФ в результате старения при температурах близких к эксплуатационным. Для стабилизации свойств эффективно применение предварительного старения (при температурах несколько выше эксплуатационных) и термомеханического тренинга через интервал мартенситных превращений. Сплавы на основе меди характеризуются более низким сопротивлением усталости.  [c.845]


При динамических нагрузках кроме указанных выше характеристик необходимо учитывать также ударную вязкость а . Для многих углеродистых и легированных сталей ударная вязкость при низких температурах (обычно ниже - 10 °С) резко понижается, что исключает применение этих материалов в таких рабочих условиях. Ударная вязкость для большинства цветных металлов и сплавов (меди, алюминия, никеля и их сплавов), а также хромоникелевых сталей аустенитного класса при низких температурах, как правило, уменьшается незначительно и пластические свойства этих материалов сохраняются на достаточно  [c.38]

Широкое применение гальванопластики в новой технике связано с получением заданных физико-механических свойств осажденных металлов, в том числе для работы в условиях высоких и низких температур. С этой целью разработаны новые электролиты и режимы для осаждения традиционных в гальванопластике металлов (меди, никеля, кобальта, железа, золота и серебра), сплавов кобальта и никеля, жаростойких металлов и их сплавов. Кроме того, созданы способы получения композиционных материалов путем осаждения металлов с порошками и нитями тугоплавких соединений, а также электролиты и режимы для осаждения алюминия, цинка, олова и тугоплавких металлов, ранее не применявшихся в гальванопластике.  [c.575]

Медь-константановые термоэлектрические термометры. Медь константановые термоэлектрические термометры ТМК приборостроительной промышленностью не изготовляются, но они находят применение в лабораторной практике, а иногда в промышленности для измерения температур от —200 до - -350°С. Медь обладает большим постоянством термоэлектрических свойств, но имеет самый низкий верхний температурный предел при длительном применении. Это объясняется тем, что медь, а также сплавы, содержащие медь, сравнительно быстро окисляются Б воздушной среде при более высокой температуре. При кратковременном применении в окислительной среде медь в паре с константаном или копелем может быть использована до 500°С. В вакууме медь-константановые термоэлектрические термометры допускают измерения до 700—800°С. Отрицательный термоэлектрод— константан представляет собой сплав (60% Си + 40% близкий по своему составу к копелю.  [c.107]

Чугунные элементы обладают такими положительными свойствами, как дешевизна, легкость отливки, хорошая акку.муляция тепла на поверхностях трения, меньшее расширение при нагреве и, следовательно, меньшие искажения геометрических размеров, высокая температура. плавления, излучательная способность и износостойкость самого чугуна и меньшее изнашивание фрикционного материала. В некоторых отраслях машиностроения применение чугунных элементов было ограничено опасностью разрыва его центробежными силами. Однако в связи с успехами, достигнутыми в металлургии чугуна в отношении повышения его механических свойств, а также в связи с развитием средств дефектоскопии чугун в настоящее время приобретает все большее распространение, постепенно вытесняя сталь. Чем выше теплоемкость металлического элемента, тем лучше тепло аккумулируется в нем и быстрее рассеивается в окружающей среде. Поэтому было бы желательно делать металлические элементы из сплавов меди, алюминия и магния, обладающих большей теплоемкостью. Но эти сплавы по своей механической прочности и низкой износоустойчивости не могут служить металлическим элементом. Поэтому в последнее время  [c.571]


Медь широко применяется в качестве конструкционного материала для изготовления различного рода сосудов, трубопроводов, химической аппаратуры, электрораспределительных устройств и другой аппаратуры. Медь обладает высокой тепло- и электропроводнофью, химической стойкостью и сохраняет свои механические свойства в условиях низких температур, когда почти все стали становятся хрупкими. Медь имеет температуру плавления 1083°С (1356 К), временное сопротивление в отожженном состоянии 200 МПа и плотность 8,9 г/см . Большое распространение в народном хозяйстве нашли сплавы меди — латунь и бронза. Латунь — это сплав меди с цинком. Ее применению способствует меньшая стоимость и плотность цинка по сравнению с медью. Температура плавления (800—900°С) зависит от состава — чем больше цинка, тем ниже точка плавления. Бронза представляет собой сплав меди с оло-вом, алюминием, бериллием и свинцом. Температура плавления 720—1000 °С. Чем больше в бронзе олова, тем ниже температура ее плавления.  [c.17]

Серебряные припои. Серебряные припои благодаря сравнительно низкой температуре плавления, хорошей жидкотекучести, высокой прочности и пластичности получили большое распространение. Предел прочности их составляет 30—50 кПмм при относительном удлинении 15— 35%. Применение их ограничивается лишь дефицитностью серебра. В качестве серебряных припоев чаще всего употребляют сплавы серебра с медью, цинком и кадмием. С целью снижения температуры плавления, повышения прочности, экономии серебра, а также улучшения технологических свойств серебряных припоев в них иногда вводятся небольшие добавки фосфора и олова. Серебряные припои применяют главным образом для пайки меди и ее сплавов. Для пайки сталей серебряные припои  [c.130]

Детали из сплава АЛб применяют в литом состоянии, так как эффект термической обработки незначителен. Для снятия внутренних напряжений применяют отжиг при 300 10° С в течение 2—4 ч. Применение деталей из сплава АЛ6 в литом состоянии объясняется .1едостаточным легированием твердого раствора медью и грубой формой кристаллизации кремния. Сплав АЛ6 имеет удовлетворительные литейные свойства, герметичность, свариваемость и обрабатываемость резанием. Его недостатками являются низкие механические свойства и пониженная коррозионная стойкость. Детали из этого сплава можно защищать анодированием в серной кислоте. Сплав АЛ6 нашел применение для литья малонагруженных агрегатных деталей и аппаратуры машиностроения, работающей при температуре, не превышающей 225° С.  [c.89]

В связи с изготовлением биметаллических вкладышей начала успешно применяться новая группа высоколегированных алюминиево-оловянных сплавов. Особенностью этих сплавов (99,5% олова и 0,5% алюминия) является наличие в их структуре большого количества мягкой, легкоплавкой эвтектики, механические и физические свойства которой весьма близки к чистому олову. Антифрикционные свойства высокооловянистых алюминиевых сплавов близки к свойствам баббитов. Конструкционная прочность подшипника из такого сплава обеспечивается стальной основой, а усталостная прочность в большой мере — состоянием алюминиевого сплава с оловом. Рядом исследований показано, что от размера, количества и характера распределения оловянистой составляющей двойных и более легированных сплавов в значительной мере зависят их антифрикционные и механические свойства, особенно усталостная прочность. С увеличением содержания олова в сплавах наблюдается тенденция к образованию междендритной и межэеренной непрерывной сетки олова. Эту тенденцию в некоторой области концентрации можно устранить применением повышенной скорости кристаллизации, а также путем добавок никеля и меди. При содержании олова около 20% и более оловянистая эвтектика образует непрерывную сетку при всех условиях охлаждения и легирования. Большое влияние на структуру сплава оказывает режим термической обработки. В случае применения отжига выше температуры рекристаллизации сплава (350° С) оловянистая эвтектика в сплавах, содержащих даже менее 20% олова, распределяется в форме непрерывной сетки. Как показали исследования, применением холодной деформации с последующей рекристаллизацией можно добиться дискретного распределения оловянистой эвтектики в сплавах, содержащих до 30% олова. При этом характер и величина включений оловянистой фазы зависят от степени холодной деформации и температуры отжига. Чем выше первая и ниже вторая, тем более дискретна структура сплава. В случае дискретной формы оловянистой фазы усталостная прочность сплавов значительно возрастет, превышая усталостную прочность свинцовистых бинарных бронз. Антифрикционные свойства сохраняются на высоком уровне и характеризуются низким коэффициентом трения с высокой устойчивостью против заедания.  [c.120]


Кадмиевые припри. В качестве кадмиевых припоев применяют сплавы кадмия с оловом, цинком, серебром. Основным достоинством кадмиевых припоев является более высокая по сравнению с оловянносвинцовыми припоями прочность и пластичность. Кадмиевые припои обладают также повышенной температурой плавления, поэтому они могут применяться для пайки деталей, работающих в условиях нагрева до 200—250° С. Однако технологические свойства кадмиевых припоев низкие, пайка с их применением значительно затруднена. В основном кадмиевые припои применяют для пайки меди, медных сплавов, омедненной стали и алюминия.  [c.140]


Смотреть страницы где упоминается термин Свойства и применение сплавов меди при низких температурах : [c.217]    [c.251]   
Смотреть главы в:

Металловедение и технология металлов  -> Свойства и применение сплавов меди при низких температурах



ПОИСК



Медиана

Медь и ее применение

Медь и ее сплавы — Свойства

Медь и сплавы

Медь и сплавы меди

Медь и сплавы температуры

Медь — Свойства

Свойства и применение меди

Сплавы Применение

Температура низкая

Температура сплавов



© 2025 Mash-xxl.info Реклама на сайте