Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Литий Коэффициент теплопроводности

Если при литье в песчаные формы с применением автоклава условия затвердевания определяются в основном конвективным теплообменом, то при использовании металлических и графитовых форм увеличение скорости затвердевания отливки происходит преимущественно за счет увеличения теплоотдачи в зазоре. Этим и объясняется тот факт, что скорость затвердевания отливки в металлической форме при повышенном давлении гелия (табл. 4), имеющего больший коэффициент теплопроводности и заполняющего зазор между отливкой и формой, несколько выше, чем при давлении азота, имеющего меньший коэффициент теплопроводности.  [c.52]


So , о,с — толщина и коэффициент теплопроводности этого слоя. Законы теплоотдачи при кипении растворов еще более сложны. В первом приближении раствор твердого вещества в однородной жидкости подчиняется формуле типа (17.34) или (17.35), если в нее вводить физические свойства раствора. Однако влияние концентрации обычно имеет сложный характер. На фиг. 114 приведены некоторые экспериментальные данные о коэффициенте теплоотдачи при кипении водных растворов солей лития и аммиака.  [c.354]

Для проверки предлагаемого метода расчета температурных полей были изготовлены клинья с углами 6°, 8°30 и —-15°. С целью получения большого количества режимов клинья изготавливались из материалов с существенно различными коэффициентами теплопроводности (использовались парафин, эпоксидная смола,свинец и цинк). Все образцы изготавливались методом литья. В каждый из клиньев по его оси на расстоянии примерно 20—30 мм друг от друга заделывались по три термопары. Спаи и проволоки термопар заливались материалом образца в момент отливки самого образца. В свинцовых и цинковых образцах термопары изолировались специальной нитью из кремнеорганического волокна, пропитанного жидким стеклом. Участки выводов термопар из тела образцов заделывались в специальные латунные трубки диаметром 4 мм. Термопары изготовлялись из константановой проволоки диаметром 0,5 мм.  [c.346]

Теплоемкость, коэффициенты теплопроводности и линейного Литий,  [c.68]

Изготовление каналов для охлаждения путем сверления в сплошном теле вкладыша целесообразно, так как вкладыши могут изготовляться из более плотного катаного или кованого материала (латуни, стали). Однако и при литом вкладыше плотность сплошной отливки всегда выше, чем плотность пустотелой отливки. Следовательно, при изготовлении каналов сверлением уменьшается опасность протекания воды и не снижается коэффициент теплопроводности, как в случае применения змеевиков.  [c.240]

Пластическими массами называются твердые материалы, которые на определенной стадии изготовления приобретают пластические свойства и в этом состоянии из них могут быть получены (методом прессования или литья) изделия заданной формы. Пластические массы (пластмассы) представляют собой композиционные материалы, состоящие из какого-либо связующего вещества (высокополимерное вещество), наполнителей, красителей, пластифицирующих и других веществ. Отдельные виды пластмасс могут быть высокополимерными веществами, не содержащими наполнителей. Применение наполнителей позволяет повысить механическую прочность пластмасс и одновременно уменьшить объемную усадку изготовляемых пластмассовых изделий. Волокнистые наполнители (асбестовое и стеклянное волокна, хлопковые очесы и др.) значительно увеличивают механическую прочность пластмасс. Неорганические наполнители (слюда, кварцевая мука, стеклянное волокно и др.) повышают коэффициент теплопроводности пластмасс и увеличивают их нагревостойкость. Содержание в пластмассах наполнителей находится в пределах от 40 до 70%. Пластификаторы вводятся в пластмассы для снижения их хрупкости. Тип применяемого связующего, наполнителей и других компонентов пластмасс определяет текучесть, скорость прессования, водопоглощение, механические и электрические характеристики.  [c.75]


Для расчета охлаждения и затвердевания отливки в металлической форме необходимо знать коэффициенты теплообмена сг , и Й2, которые определяют термическое сопротивление материала зазора. В том случае, когда известны свойства ма риала зазора, например коэффициент теплопроводности обмазки при литье в металлической форме, общее термическое сопротивление зазора можно  [c.148]

Однако указанные конструкции кессонов имеют недостатки, особенно при переводе их на ИО. К ним относятся резкое (почти вдвое) снижение коэффициента теплопроводности по сравнению с полученной из проката медью и наличие точечного контакта между плитой и залитой в нее трубой. Поэтому даже при изменении конструкции трубного элемента для снижения гидравлического сопротивления и обеспечения надежности циркуляции в нем указанные недостатки не исключаются. Кроме того, в литом кессоне отсутствует возможность контроля и устранения нарушения целостности трубного элемента (змеевика) и швов, что может привести к попаданию влаги в печное пространство.  [c.117]

Магний — щелочноземельный металл, II группы Периодической системы элементов, порядковый номер 12 (см. табл. 1), атомная масса 24,312. Цвет светло-серый. Характерным свойством магния является малая плотность 1,74 г/см , температура плавления магния 650 °С. Кристаллическая решетка гексагональная (с/а = 1,62354). Теплопроводность магния значительно меньше, чем у алюминия 125 Вт/(м-К), а коэффициенты линейного расширения примерно одинаковы (26,1 10 при (20—100 С) I. Технический магний Мг1 содержит 99,92 % Mg. В качестве примесей присутствуют Ре, Si, Ni, Na, Al, Мп. Вредными примесями являются Ре, Ni, Си и S1, снижающие коррозионную стойкость магния. Механические свойства литого магния сГв = 115 МПа, о ,., = 25 МПа, б 8 %, Е = = 45 ГПа, НВ 300 МПа, а деформированного (прессованные прутки) Оц 200 МПа, ст ,., = 9 МПа, б =-- 11,5 %, НВ 400 Л Па. На воздухе м, 11 ит легко воспламеняется. Используется в пиротехнике и химической промышленности.  [c.337]

Твердость антифрикционных алюминиевых сплавов НВ 40 — 80, теплопроводность 100 — 200 ка.ч (м-ч-"С), коэффициент линейного расширения (21—24)10 , модуль упругости 7000 кгс/мм". Предел прочности литых сплавов 12—18 ктс/мм", штампованных 20 — 30 ктс/мм .  [c.381]

Благодаря таким свойствам сплав нашел широкое применение при изготовлении литьем в кокиль поршней для двухтактного двигателя модели 440-02, устанавливаемого на снегоходе Рысь на ОАО УМПО (см. табл. 17). Сплав обладает следующими технологическими и физико-механическими свойствами температура плавления 500°С температура литья 730 С литейная усадка 1,3% герметичность высокая склонность к газонасыщению пониженная свариваемость хорошая рабочая температура 150 С плотность 2720 кг/м коэффициент термического расширения ахЮ (1/ С) - 21 при температуре 200 - 300°С теплопроводность при температуре 20 - 300°С составляет 38 Вт/(м-°С).  [c.72]

Магний — пластичный металл блестящего серебристо-белого цвета. Плотность литого магния 1,737 г см и уплотненного 1,739 г/сл . Температура плавления 651 С, кипения 1107° С, скрытая теплота плавления 70 кал/г. Теплопроводность 0,37 кал см-сек удельная теплоемкость в кал г-°0. 0,241 при 0° С 0,248 при 20° 0,254 при 100 С, и 0,312 при 650° С. Коэффициент линейного расширения 25-10 +0,0188 ° (в пределах от О до 550° С). Удельное электросопротивление при 18° С 0,047 ом-мм Ы. Стандартный электродный потенциал 2,34 в. Электрохимический эквивалент 0,454 г/а ч. Магний неустойчив против коррозии, образующаяся поверхностная окисная пленка не защищает массу металла. При повышении температуры, особенно, если  [c.82]

Фрикционные материалы на асбестовой основе (типа ферродо) и литые металлические (чугун, сталь, бронза) не удовлетворяют этим требованиям. Из-за низкой теплопроводности в случае фрикционных материалов на основе асбеста происходит сильный нагрев трущейся пары. Наличие влаги в асбесте и органических веществ в смазке (масло, битум, бакелит, каучук) приводит к непостоянству коэффициента трения и вызывает большой износ при высоких температурах. При температурах выше 330 °С происходит обугливание органических веществ, что вызывает быстрый износ фрикционного материала.  [c.57]


Твердость молибдена и вольфрама можно повысить легированием их Ti, Zr, Nb, Та и другими легирующими компонентами. Молибденовые сплавы очень хорошо проводят тепло [Я,=0,8.Ч-1,2 Дж/(с-см- °С)], теплопроводность же инструментальных сталей, а также сплавов на основе никеля и кобальта меньше 0,32 Дж/(с-см-°С). Коэффициент теплового расширения молибденовых сплавов меньше. Долговечность работаюш,их без внутреннего охлаждения инструмен-toB и форм длй литья под давлением латуни значительная.  [c.283]

С помощью газовой сварки производят наплавку только литыми твердыми сплавами при избытке ацетилена. Для качественной наплавки литого твердого сплава необходимо тщательно зачистить и разделить место под наплавку и подогреть его до 650—700°С. Наплавленный слой твердого сплава обладает хрупкостью, малой теплопроводностью (по сравнению с углеродистой сталью) и высоким коэффициентом линейного расширения, поэтому после наплавки его необходимо отжечь при температуре 1000—1100°С.  [c.272]

Наряду с газами и капельными жидкостями в качестве теплоносителей применяют жидкие (расплавленные) металлы, такие, как ртуть, натрий, калий, литий, висмут, галлий, свинец. Достоинством этих теплоносителей является то, что они имеют высокую теплопроводность, малую вязкость, высокую температуру кипения коррозионное воздействие на материал стенок каналов, по которым они перемещаются, — незначительное. Благодаря высокой теплопроводности жидкие металлы могут очень интенсивно отводить теплоту от поверхности нагрева. Их можно использовать при высоких температурах (700— 800° С) и в то же время при низких давлениях. Потери давления при движении жидких металлов в каналах находятся в приемлемых пределах. Многие из них имеют невысокую температуру плавления (для натрия, например, / д — 97,5° С) и могут без особых трудностей переводиться в жидкое состояние. Все эти качества делают их весьма перспективными теплоносителями. Применение жидких металлов в теплосиловых установках при определенных условиях позволяет повысить их коэффициент полезного действия.  [c.217]

Полиамиды. Полиамиды получаются путем варьирования различных исходных материалов, что дает возможность изменять в широких пределах свойства конечного продукта. Элементы литых изделий из полиамидов могут быть сварены или склеены эпоксидными смо.лами. При конструировании и изготовлении деталей из полиамидов необходимо учитывать их низкую теплопроводность и высокий коэффициент теплового расширения. Коэффициент расширения полиамидов в 10 раз больше, чем у стали. Рекомендуется выполнять детали тонкостенными. В зубчатых передачах необходимо предусматривать зазоры, обеспечивающие от заеданий нри повышении температуры. Изделия из полиамидов имеют высокую поверхностную твердость и прочность на разрыв и истирание, значительную прочность па изгиб и ударный изгиб. Полиамиды обладают хорошим сцеплением с металлом, а также хорошей устойчивостью к действию углеводородов, спиртов, жиров, масел и щелочей, в том числе концентрированных. Они растворяются в фенолах, минеральных кислотах, уксусной кислоте и спиртовых смесях. Полиамиды практически негорючи и весьма трудно воспламеняются. Полиамид 68 применяется ддя изготовления вкладышей подшипников скольжения, антифрикционных деталей, рабочих органов насосов и других гидромашин, а также клапанов, шестерен, винтов и т. п. Защитные покрытия из полиамидов обладают стойкостью к воздействию ароматических углеводородов, масел и других сред. Полиамиды находят применение при изготовлении деталей часовых механизмов, деталей электроаппаратов, а также для изоляции проводов и кабелей.  [c.273]

Магний — щелочноземельный металл, второй группы Периодической системы элементов Д. И. Менделеева, порядковый номер 12 (см. табл. 1), атомная масса 24,312. Цвет светло-серый. Характерны.м свойством магния является малая плотность 1,74 г/см . Температура плавления 650°С. Кристаллическая решетка гексагональная (а = 3,203, с=5,2002 А, с/а= 1,62354). Теплопроводность магния значительно меньше, чем алюминия [0,3 кал/(см-с-°С)], а коэффициенты линейного расширения примерно одинаковые (26,1-Ю" при 20—100°С). Технический магний Мг1 содержит 99,92% g. В качестве примесей присутствуют Ре, Si, N1, Ыа, А1, Мп, Си. Вредными примесями являются Ре, N1, Си и 5 , снижающие коррозионную стойкость магния. Механические свойства литого магния Ов=И,5 кгс/мм  [c.381]

Давление, прикладываемое к кристаллизующемуся расплаву, оказывает влияние на значения основных термофизических параметров литой заготовки температуру плавления, коэффициент теплопроводности, удельную теплоемкость, скрытую теплоту кристаллизации, плотность и т. п.  [c.8]

Ассортимент изоляционных материалов разнообразен. Многие из них носят специальные названия, например шлаковая вата, зоно-лит, асбозурит, асбослюда, ньювель, совелит и др. Шлаковая вата получается из шлака, который расплавляется и затем паровой струей разбрызгивается. Зонолит получается из вермикулита (сорт слюды) путем прокаливания его при температуре 700—800° С. Асбослюда представляет собой смесь асбеста и слюдяной мелочи. Совелит является продуктом химического производства. Широкое применение получила так называемая альфольевая изоляция. В качестве изоляции здесь используется воздух, и вся забота сводится к уменьшению коэффициента конвекции и снижению теплоотдачи излучением путем экранирования алюминиевой фольгой (см. рис. 6-11). Коэффициент теплопроводности материалов в сильной мере зависит от их пористости. Чем больше пористость, тем меньше значение эффективного коэффициента теплопроводности. О пористости материала можно судить по величине его плотности, с увеличением пористости плотность материала уменьшается.  [c.200]


Для подшипников скольжения применяют термореактивные и термопластичные синтетические материалы (см. т. 2, гл. IV), из которых изготовляют цельные втулки и вкладыши — литые, прессованные нлп наборные. Недостатки таких вкладышей — плохой теплоотвод вследствие низкого коэффициента теплопроводности (порядка 0,2— 0,3 ккал/м ч град), значительное водопоглош,ен 1е, большие упругие деформации и, как следствие, нестабильность размеров, Эти недостатки  [c.613]

Перлитокерамические изделия изготовляют прессованием вспученного перлитового песка и глины (в соотношении 1 1) и дальнейшей сушкой и обжигом при температуре 850—900 °С. Получаемые марки изделий 250, 300, 350, 400. В литейном производстве используют оболочки и трубы, изготовленные из пер лито керамических смесей, а также измельченные отходы пер лито керамических изделий. Коэффициент теплопроводности изделий с объемной массой 250—400 кг/м при 20 °С составляет 0,075—0,110 Вт/(м-°С).  [c.260]

В соответствии с ГОСТ 10087—62 материал прессовочный АГ-4С изготовляется в виде ленты для получения труб методом намотки и используется для горячего прессования или литья под давлением различных высокопрочных изделий и деталей, несущих элементов строительных конструкций. Объемный вес 1650—1800 вз/л коэффициент теплопроводности нри 20° С 0,18—0,28 ккал м-ч-град) предел прочности при растяжении 2000 кПсм , при сжатии — 1300 кПсм , при изгибе —2000 кПсм теплостойкость 280° С температура применения 200° С водопоглощение за,24 ч не более 0,2%.  [c.28]

Состав припоев в % Температура в °С Механические свойства в литом состоянии Коэффи- Коэффициент теплопроводности в вт/М град кал1см-секх X град)  [c.204]

Наиболее приемлемыми теплоносителями этого типа являются щелочные и тяжелые металлы и их сплавы натрий, калий, натриевокалиевый сплав, литий, висмут, ртуть, олово, сплавы висмута со свинцом и др. Физические свойства жидких металлов существенно отличаются от свойств обычных теплоносителей — воды, масла и др. У металлов больше удельный вес и коэффициент теплопроводности значение же теплоемкости ниже, особенно мала величина критерия Прандтля  [c.239]

В жилищном строительстве для наружных стен применяется фанера толщиной 7 и 9,5 мм, приклеенная резорциновым клеем к ребрам сечением 51 X 76 мм. Между листами фанеры укладывается слой стекловолокна толщиной 25 мм, приклеенный к наружным листам, и древесно-волокнистые плиты толщиной 25 мм, приклеенные к внутренним листам фанеры. Между слоем стекловолокна и древесно-волокнистыми плитами имеется воздушная прослойка. Коэффициент теплопроводности Подобных стен в 1,5 раза меньше, чем в обычных дощатых оштукатуренных каркасных стенах. Также применяются прозрачные плиты Акри-лит , изготовляемые из акриловой кислоты, плиты Стиропор размером 1,22 X 2,44 X 0,068 л с объемным весом 10—12 кг/м .  [c.428]

За последние годы. разработан способ получения ультратонкого волокна, основанный на дублекс-процессе. Этот процесс заключается в следующем. Вытекающее из фильер стеклоплавильной печи первичное стекловолокно вытягивается с помощью двух гуммированных валиков в волокна диаметром 100—200 мк. Вытянутые из фильер первичные волокна подаются через направляющее питательное устройство в высокотемпературный газовый поток. Под действием раскаленных газов волокна размягчаются и расчленяются на тонкие короткие волокна диаметром 0,5—1,5 мк. Полученное ультратонкое волокно поступает на конвейер, где оно пропитывается соответствующими веществами и сматывается в рулоны. Изделия из ультратонкого волокна (УТВ) имеют объемный вес 5—10 кг м , коэффициент теплопроводности 0,023 ккал1 м ч град), объемную пористость 99,8% и высокую вибростойкость. Из ультратонкого стекловолокна дозможно получение достаточно устойчивых водных суспензий и формование из них способом бумажного литья теплоизоляционных изделий.  [c.107]

Предполагается, что на форму и расположение дендритов в структуре литого металла влияют скорость движения расплава, толщина Ог, диффузионного пограничного слоя и скорость Я кристаллизации. Изменение во времени радиуса г дендрита, покрытого теплоизоляционным слоем ликватов толщиной б >, имеющего коэффициент теплопроводности Я-л и протяженность L (рис. 32),  [c.34]

Наиболее часто управление термическими условиями литья в кокили осуществляют через коэффициент теплопроводности Я-з, толщину Х покрытия и режим охлаждения кокиля. Изменяя Я,2 и Хз в широких пределах, регулируют условия охлаждения и затвердевания металла. При Хъ1Хх 1 и естественном охлаждении формы продолжительность затвердевания почти пропорциональна Х3.  [c.92]

По уравнению (VI1.37) можно определить время т нагрева воздуха до любой необходимой при испытаниях температуры при заданной температуре нагревателя и, кроме того приняв X = со, при заданной температуре воздуха опреде лить необходимую температуру нагревателя. Теперь зная величину а и из уравнения (VI 1.24) можно опреде лить необходимую силу тока и соответственно минималь но необходимую мощность нагревателя при установившем ся режиме испытаний. Определим теперь время нагрева образцов различной толщины до температуры, принятой при испытаниях, что необходимо для оценки производительности испытаний образцов в спроектированной термокамере. Поскольку типовыми образцами из полимеров являются образцы пластинчатой и цилиндрической форм, задача определения времени нагрева таких образцов до равномерной по всей толщине температуры, необходимой при испытаниях, сводится к задаче нестационарной теплопроводности соответственно для пластины или цилиндра. При этом можно принять, что подвод тепла к обеим поверхностям пластины осуществляется при одинаковом коэф-фицинте теплоотдачи во всем промежутке времени. То же имеет место и для цилиндра. Рассмотрим сначала процесс нагревания пластины. Коэффициент теплоотдачи а от  [c.185]

Фотоситалл получается, как и другие ситаллы, путем кристаллизации светочувствительного стекла, состоящего из окиси кремния (75 %), окиси лития (11,5 %), окиси алюминия (10 %) и окиси калия с небольшими добавками азотнокислого серебра и двуокиси церия. Фотоситалл устойчив к кислотам, обладает высокой механической и термической прочностью. Теплопроводность его в несколько раз выше, чем у других ситаллов, температурный коэффициент линейного расширения составляет 9-10 К в диапазоне до 120 С, удельное объемное сопротивление 10 —10 Ом м,  [c.421]

Магний — пластичный металл блестящего серебристо-белого цвета. Плотность литого магния 1,737 г/см и уплотненного 1,739 г/см . Температура плавления 65ГС, кипения — 1107° С. Скрытая теплота плавления 70 кал/г. Теплопроводность 0,376 кал/(см-с-°С). Удельная теплоемкость, кал/(г-°С 0,241 — при 0° С 0,248 — при 20° С 0,254 — при 100 С и 0,312 — при 650° С. Коэффициент линейного расширения 25 10 +0,0188 г° (в пределах О—550° С). Удельное электрическое сопротивление при 18° С 0,047 Ом/(мм /м). Стандартный электродный потенциал 2,34 В. Электрохимический эквивалент 0,454 г/(А-ч). Магний неустойчив против коррозии, образующаяся поверхностная окисная пленка не защищает массу металла. Магний горюч, порошок или тонкая лента из него сгорают в воздухе с ярким ослепительным пламенем. Используется в магние-термии, в качестве твердого топлива — в реактивной технике. При повышения температуры возможно самовоспламененпе магниевого порошка или стружки. Магний устойчив против щелочей, фтористых солей, плавиковой кислоты и т. д. Чистый магний в качестве конструкционного материала почти не ис-по.льзуется, но является основой эффективных магниевых сплавов. Применяется в производстве стали, высокопрочного (магниевого) чугуна, для катодной защиты стали.  [c.145]


Спеченные алюминиевые сплавы (САС) применяют тогда, когда путем литья и обработки давлением трудно получить соответствующий сплав. Изготовляют САС е особыми физическими свойствами. САС содержат большое количество легирующих элементов (например, САС1 25—30 % 51, 5—7 % N1, остальное А1). Из САС1 делают детали приборов, работающих в паре со сталью при температуре 20—200 "С, которые требуют сочетания низкого коэффициента линейного расширения и малой теплопроводности.  [c.430]

В СССР организовано производство заготовок размером 300 х200 хЗО и 300 х200 х50 мм из молибденового сплава. По сравнению со сталью 4Х5МФС, применяемой для изготовления пресс-форм при литье цветных сплавов, молибден имеет в 1,6 раз больший модуль упругости, в 3 раза меньший коэффициент теплового расширения и в 2,5 раза большую теплопроводность. Для повышения стойкости молибденовых пресс-форм требуется их  [c.115]

Полистирол выпускают в виде тонкого порошка или в виде гранул. Изготавливают полистирол двумя способами эмульсионным и блочным. Блочный полистирол отличается от эмульсионного более высокими диэлектрическими свойствами, но и несколько худшими показателями механической прочности. Полистирол — аморфный прозрачный бесцветный полимер, легко окрашиваемый в различные цвета. При обычной температуре полистирол тверд и стекловиден, выше 80° С в нем начинают преобладать эластические деформации, постепенно сменяющиеся пластичностью. Максимальная пластичность проявляется при 200—220° С, выше 260° С начинается термическая деструкция полимера. Кислород воздуха не оказывает на полистирол заметного окислительного действия. Изделия формуют при 200—210° С литьем нри удельном давлении 700—1500 кПсм в зависимости от типа изделий. Существенные затруднения при литье изделий из полистирола, особенно крупногабаритных, вызваны сочетанием сравнительно низкой упругости материала с высоким коэффициентом термического расширения его и малой теплопроводностью. Нагретый до пластического состояпия полистирол продавливается в холодную форму, касается ее стенок, и поверхность изделия, быстро охлаждаясь, фиксирует контуры формы. Вследствие малой теплопроводности внутри изделия еще сохраняется высокая температура. Это вызывает большие внутренние напряжения, что при недостаточной упругости материала приводит к растрескиванию толстостенного или крупногабаритного изделия. Поэтому из полистирола обычно изготавливают сложные и сложноармированные, но мелкие детали приборов общего, электро- и радиотехнического назначения. Для снятия внутренних напряжений детали рекомендуется подвергать отжигу. Отжиг проводят при 65—70° С с постепенным охлаждением изделий до нормальной температуры.  [c.40]

Теплопроводность бериллиевых бронз составляет порядка 25% теплопроводности технической меди, т. е. 83—108 вт1м-град, плотность 8230 кг/ж , коэффициент линейного расширения при 20—300° С равен 17,6-Ю град , температура литья равна 1030—1060° С. Другие физические и технологические свойства, например, бронзы Бр.Б2 приведены в табл. 49.  [c.137]

Для изготовления литых деталей применяют следующие сплавы чугуны (серый, белый, ковкий, модифицированный, высокопрочный магниевый, антифрикционный, жаростойкий, кислотоупорный, немагнитный и др.) углеродистую сталь для обеспечения повышенной прочности и пластичности легированную сталь для получения специальных свойств алюминиевые, магниевые и титановые сплавы для деталей с малым весом и высокой удельной прочностью медные сплавы (латунь, бронза) для изготовления отливок с повышенной электронроводностью, теплопроводностью и низким коэффициентом трения и др.  [c.93]

Нередко спеченные алюминиевые сплавы применяют, когда путем литья и обработки давлением нельзя получить сплав. Таким образом, изготовляют САС с особыми физическими свойствами, содержащими большое количество легирующих элементов, например САС1 (25 — 30% 5—7%Ш и остальное А1) САС1 применяется для деталей приборов, работающих в паре со сталью при температуре 20—200° С, которые требуют сочетания низкого коэффициента линейного расширения и малой теплопроводности.  [c.363]


Смотреть страницы где упоминается термин Литий Коэффициент теплопроводности : [c.34]    [c.82]    [c.182]    [c.74]    [c.88]    [c.95]    [c.167]    [c.573]    [c.231]    [c.180]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.188 ]



ПОИСК



504—505 ( ЭЛЛ) литые

X оно литы

КОЭФФИЦИЕНТ — ЛИТЬ

Коэффициент теплопроводности

Литий

Литий теплопроводность

Мел — Коэффициент теплопроводност



© 2025 Mash-xxl.info Реклама на сайте