Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Исследование и контроль материалов

Рентгеноструктурный анализ —один из наиболее распространенных физических методов исследования и контроля материалов и деталей в лабораториях заводов и научно-исследовательских институтов. Он позволяет определять фазовый состав материалов, состав твердых растворов, размеры и форму кристаллов, внутренние напряжения, преимущественные ориентировки кристаллов (текстуры) и другие параметры.  [c.3]


Среди физических методов исследования и контроля материалов важное место занимает рентгеноструктурное исследование кристаллических материалов. Металлы и сплавы, неорганические и органические химические соединения и другие кристаллические материалы применяются в химической промышленности и машиностроении, металлургии и строительстве, радиотехнике и сельском хозяйстве. Поскольку технические материалы, как правило, являются поликристаллическими, в промышленности проводят преимущественно рентгеноструктурный анализ различных процессов, происходящих в поликристаллических телах.  [c.10]

Общие сведения об измерении твердости материалов. Измерение статической твердости материалов основано на определении размеров отпечатка, возникающего на поверхности образца при вдавливании в него твердого наконечника. Наконечник (индентор) в форме шара, конуса или пирамиды из твердого материала вдавливают в исследуемую поверхность механическим нагружением. Под индентором возникает зона пластического течения материала и на контролируемой поверхности появляется отпечаток, площадь которого характеризует сопротивляемость материала пластическому деформированию. При проявлении ползучести материала отпечаток с течением времени увеличивается, и степень увеличения его площади во времени может служить характеристикой ползучести. Поскольку пластической деформации подвергается лишь малый объем, возможно многократное вдавливание индентора в различных точках и получение на одном образце набора данных о твер -дости или кривых, характеризующих ползучесть материала. В этом случае говорят о длительной твердости. Возможность автоматизации процессов изме -рения позволяет считать метод твердости одним из наиболее экономичных и эффективных методов исследования и контроля материалов и изделий.  [c.203]

ИССЛЕДОВАНИЕ И КОНТРОЛЬ МАТЕРИАЛОВ  [c.247]

Классический метод исследования и контроля металлических материалов включает изучение строения структуры шлифа в оптическом микроскопе. Это направление в металловедении называют металлографией. Структуру выявляют с помощью травления. Металлографическая техника травления занимает в металловедении важное место.  [c.9]

Наиболее часто встречающийся вид нагрузки — растяжение. Испытания на растяжение — основной и наиболее распространенный метод исследования и контроля механических свойств материалов. Их используют при разработке новых материалов, для оценки однородности свойств металла различных плавок или полуфабрикатов, идентичности режимов термической обработки деталей и т. д. Они позволяют определить количественно Опц.  [c.10]


В ИМАШ созданы и успешно используются уникальные стенды для исследования процессов трения, износа, смазки катящихся со скольжением тел (зубчатые передачи, кулачковые механизмы и др.), в глубоком вакууме и газовых средах (рис. 12), а также другое оборудование, установки и приборы для исследования и контроля характеристик надежности материалов, элементов конструкций и натурных технических объектов и для установления закономерностей сопряжения функций оператора и машины.  [c.33]

РЕНТГЕНОСТРУКТУРНОГО АНАЛИЗА В ИССЛЕДОВАНИЯХ И КОНТРОЛЕ КАЧЕСТВА МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ  [c.94]

Статистические методы исследований и контроля механических свойств.— В кн. Методы испытаний, контроля и исследования машиностроительных материалов. В 3-х т. Т. 2. М., Машиностроение , 1974, с. 258- 299.  [c.413]

По методике НИИТАвтопрома взвешенный образец модельного состава ( 15 г) погружают в раствор связующего и выдерживают в течение 2 ч при контактной температуре, а затем помещают в кипящую воду на 2,5 ч. Воду охлаждают, модельный состав снимают с ее поверхности, исследуют кислотное число, температуру каплепадения и зольность модельного состава. По результатам исследований судят о стойкости модельного состава при взаимодействии со связующим. Плавкость, зольность, коксуемость, кислотное число, число омыления определяют стандартными Методами. Например, плавкость оценивают температурами плавления или каплепадения, определяемыми соответственно по ГОСТ 4255—7Ь и ГОСТ 6793—74, зольность—по ГОСТ 1461—75, количество содержащейся воды — по ГОСТ 2477—65, кислотное число — по ГОСТ 5985—79, коксуемость (на приборе ЛКН-70) по ГОСТ 8852—74, число омыления — по ГОСТ 21749—76. До настоящего времени актуальна проблема создания наиболее обоснованных и объективных унифицированных методов исследований и контроля модельных материалов и централизованного производства приборов для их проведения.  [c.148]

Метод возбуждения колебаний через воздух малоэффективен из-за больших потерь акустической энергии при распространении звука по воздуху, низкой эффективности излучения колебаний в воздух, малого коэффициента прохождения звуковой энергии из воздуха в твердое тело. В связи с разработкой сравнительно эффективных излучателей и приемников, работающих на изгибных колебаниях, метод может оказаться перспективным при исследованиях и контроле тонколистовых материалов (фольг, бумаги и др.).  [c.85]

Резонансный метод исследования и контроля реакторных материалов и из -делий используется достаточно эффективно, прежде всего при отработке технологии новых материалов. Этим методом изучали свойства металлических и керамических материалов в широком интервале изменения температуры (от 4,2 К до 2500...3000 К), концентрации, при механических, химических, радиационных воздействиях [22]. Зависимость модуля упругости от плотности и зависимость резонансных частот от размеров изделия позволили использовать этот метод для изучения спекания керамических материалов. Основу указанных применений составляла связь характеристик упругости и плотности с другими физическими свойствами материала. Например, изучение изменения модуля упругости двуокиси урана при облучении в активной зоне ядерного реактора позволило сделать заключение о механизме радиационного повреждения этого материала на начальном этапе его работы в реакторе. О возможности использования резонансного акустического метода для контроля топливных таблеток ядерных реакторов уже упоминалось.  [c.154]

Задачи измерений твердости. Измерение твердости широко применяется в лабораторных и производственных условиях в качестве производительного и экспрессного метода определения механических характеристик, а также для косвенной оценки свойств материалов при материаловедческих исследованиях и контроле состояния металла объектов.  [c.202]


Рисунок 2.8 - Пути образования стекол и керамических материалов [11] Задача исследования заключалась в определении возможности контроля технологического процесса получения материала заданной структуры. Рас- Рисунок 2.8 - Пути образования стекол и керамических материалов [11] <a href="/info/515589">Задача исследования</a> заключалась в определении возможности <a href="/info/534832">контроля технологического процесса</a> получения <a href="/info/111800">материала заданной</a> структуры. Рас-
К достоинствам подобных систем относятся повышенное по сравнению с обычными микроскопами разрешение, возможность регулирования яркости, контраста и масштаба изображения электронным способом, большой динамический диапазон (до 60 дБ и более). Для контроля материалов, прозрачных только в инфракрасном диапазоне спектра (кремний, германий, арсенид галлия), применяют лазеры, излучающие на соответствующих длинах волн, в сочетании с фотоприемниками, обладающими нужной спектральной чувствительностью. Возможно исследование объектов в поляризованных лучах, контролирование в них напряжений методом фотоупругости, а также исследование магнито- и электрооптиче-ских свойств материалов при использовании соответствующих источников электромагнитных полей.  [c.96]

Способность ядерных излучений проникать в толщу вещества (с постепенной потерей энергии) широко используется для нужд дефектоскопии, для измерений толщины облучаемых материалов и пр. Под действием излучений возрастает активность катализаторов и, следовательно, увеличивается скорость протекания химических реакций. Под их воздействием изменяются структура и свойства исходных веществ, возникают изменения в основных структурных элементах ядер живых клеток (хромосомах), происходят разрушение и перестройка биологических комплексов и т. д. Применение стабильных и радиоактивных изотопов — источников ядерных излучений — в исследовательской и производственной практике стало эффективным методом исследования и технологического контроля с помощью изотопных индикаторов (метод меченых атомов). Использование энергии распада радиоактивных изотопов определило возможность получения небольших количеств электроэнергии посредством полупроводниковых преобразователей.  [c.188]

Дальнейшее широкое распространение в различных отраслях народного хозяйства Советского Союза получат радиоактивные изотопы и ядерные излучения. Ежегодно в производственную практику будут вводиться многие десятки тысяч приборов радиоактивной дефектоскопии, контроля и автоматического регулирования технологических процессов, бесконтактного измерения плотности жидкостей и пр., аппаратура для геологических скважинных исследований и активационного анализа, установки радиотерапии и т. д. В промышленной и сельскохозяйственной практике найдут применение радиационно-химические методы производства новых материалов с использованием ускорителей заряженных частиц и ядерных реакторов, облучающие установки для предпосевной обработки семян, дезинсекции зерна и стерилизации пищевых продуктов, специальные радиоизотопные источники электроэнергии и т. д. Будет продолжены и развиты теоретические и экспериментальные исследования процессов ядерного синтеза.  [c.196]

Степень точности информации, получаемой с помощью установок для тепловой микроскопии, в значительной мере определяет возможности использования методов и средств совмещенных исследований структуры и свойств материалов не только при выполнении работ исследовательского характера, но и при контроле качества продукции металлургического производства, машиностроения и приборостроения.  [c.102]

В результате исследований и разработок низкочастотных ультразвуковых преобразователей и аппаратуры стала возможна реализация низкочастотного эхо-импульсного метода [35 ] при контроле физико-механических характеристик, дефектоскопии и толщинометрии изделий из полимерных композиционных материалов, вследствие получения упругих импульсов малой длительности и существенного повышения направленности в режиме излучения и приема.  [c.87]

В 1969—1970 гг. в Научно-исследовательской лаборатории ВМС США начались исследования биологического разрушения материалов и было решено установить скорости коррозии конструкционной стали в различных местах и проверить справедливость теории биологического контроля коррозии в морских средах. Стенды, на которых было закреплено по 12—14 дисков из углеродистой стали, вырезанных из одного листа металла, были доставлены в 5 различных мест и погружены в морскую воду. Расстояние от дна составляло около 2 м, а глубина погружения— 3,5—5,5 м относительно среднего уровня прилива.  [c.446]

Методы, применяемые при облучении в реакторе, можно подразделить в основном на две. категории. Первая включает сравнительно простые методики, используя которые облучают материалы, исследуемые затем в камерах или боксах. Ко второй категории можно отнести более сложные методики, регламентирующие исследования, требующие контроля как условий, так и соответствующих измерений непосредственно во время облучения.  [c.75]

Наиболее широкое применение в промышленности получили неразрушающие испытания методами радиографии (просвечивание рентгеновскими, гамма-лучами), ультразвуковой и магнитопорошковой дефектоскопии, контроль по магнитным и электромагнитным характеристикам, электроиндуктивный контроль с помощью вихревых токов и дефектоскопия проникающими жидкостями. В настоящее время неразрушающие испытания стали предметом специальной технической дисциплины — неразрушающей дефектоскопии. Для исследования космического пространства необходимо решать сложные задачи в области контроля материалов, конструкций и обеспечения их качества и надежности. В связи с этим значительно усовершенствуются ранее известные методы, применяются комплексные процессы неразрушающего контроля, включающие несколько разных методов для решения одной задачи, вместе с тем появились и принципиально новые методы неразрушающего контроля. Необходимость в новых методах была обусловлена внедрением новых материалов и производственных процессов и требованием по-  [c.256]


Результаты научных исследований и практический опыт показывают, что радиоактивные изотопы и источники ядерных излучений в сочетании с другими средствами автоматизации позволяют осуществить комплексную автоматизацию технологических процессов на высоком научно-техническом уровне. Объясняется это тем, что ряд процессов контроля и управления производством можно осуществлять с высокой степенью точности только с помощью изотопов. Например, с помощью изотопов можно обеспечить точное определение толщины листовых материалов, бесконтактное определение и поддержание уровня в закрытых сосудах, дистанционный контроль плотности растворов и пульп и т. д.  [c.76]

Радиоактивные изотопы многих десятков элементов используются в машиностроении как меченые атомы и как источники излучения при исследовании взаимодействия контактирующих веш,еств, диффузии и растворимости, износостойкости деталей машин и инструментов, при испытании и изменении свойств конструкционных, смазочных, горючих и других материалов, для измерения и контроля различных параметров, установления физико-химических и технологических закономерностей процессов при их автоматизации.  [c.3]

Перспективным материалом для изготовления глубоководных аппаратов с максимально возможной глубиной погружения с точки зрения высокой удельной прочности является стеклопластик, изготовленный методом намотки стеклянного волокна. За рубежом в течение последних лет осуществляется широкая программа исследований по проектированию и изготовлению таких корпусов методом намотки стеклянного волокна. Исследовались три типа конструкций цилиндрических подводных корпусов однослойная обшивка, подкрепленная ребрами жесткости, трехслойная с обшивками из стеклопластика и легким и прочным заполнителем между ними. Концевые крышки имеют сферическую форму. Основными трудностями, возникающими при изготовлении корпусов методом намотки, являются необходимость создания и контроля определенной степени натяжения волокна, получение соосных отверстий и т. д., особенно в случае изготовления толстых оболочек [91].  [c.342]

Если применение эффектов Зеемана и Фарадея для излучения энергетических спектров кристаллов, параметров зонной структуры и природы примесных центров и центров окраски давно уже стало традиционным в практике лабораторных исследований, то использование магнитооптических явлений для неразрушающего контроля материалов было предложено сравнительно недавно.  [c.195]

Специфической особенностью метода рентгеноструктурного анализа является необходимость использования расчетного (таблицы и графики решений уравнений) и экспериментального справочного материала. При его использовании значительно облегчается и ускоряется интерпретация рентгенограмм. Такие данные общего характера приведены, например, в работе [3]. Методические руководства, например [1, 2, 8], содержат указания для проведения исследования и помогают правильно выбрать режимы съемки рентгенограмм. Однако для исследования и в особенности контроля машиностроительных материалов необходимы сведения о структуре конкретных материалов и фаз в сплавах, представленные в форме, облегчающей и ускоряющей анализ.  [c.3]

Меченые атомы и соединения позволяют судить о поведении элементов в самых различных процессах. Радиоактивные изотопы могут быть использованы для контроля износа деталей машин и режущего инструмента, для исследования движения газов и шихтовых материалов, для оценки износа футеровки металлургических печей, для выяснения распределения серы и фосфора в сплавах, для разработки оптимальных режимов перемешивания сплавов и т, д. Меченые атомы используются для определения физико химических характеристик металлов и сплавов — упругости пара, коэффициентов диффузии и самодиффузии, диффузии металлов в окисные пленки, взаимной растворимости металлов и др.  [c.429]

Справочник построен с учетом последовательности операций при рентгеноструктурном анализе. Первая и вторая главы имеют методический характер и содержат сведения о методике и аппаратуре рентгеновского контроля, методах фазового анализа и измерения концентрации твердых pa твopo . Кроме общего описания методик приведены рекомендации по применению рентгеноструктурного анализа при исследовании и контроле материалов после термической и химико-термической обработок.  [c.3]

Разработка и совершенствование физических и физнко-меха-нических методов исследования и контроля качества металлов и неметаллических материалов  [c.153]

Последние достижения современной электронной микроскопии (просвечивающей и сканирующей) изложены в монографии Д. Брандона и У. Каплана Микроструктура материалов. Методы исследования и контроля (Пер. с англ, под ред. С. Л. Баженова. — М. Техносфера, 2004. — 384 с.).  [c.184]

Далее основное внимание при рассмотрении проблем повышения качества материалов, структур и технологических процессов МДП-БИС будет отведено физическим процессам и явлениям, протекающим в сильных электрических полях, в том числе и при инжекции носителей, а также будут систематизированы основные данные о сильнополевой туннельной инжекции в МДП-структурах, о процессах зарядовой нестабильности, о дефектности и механизмах накопления зарядов в диэлектрических слоях МДП-структур, применительно к инжекционным методам модификации, исследования и контроля, что позволило бы более объективно показать их возможности, особенности применения и интерпретации получаемых результатов.  [c.117]

Методы измерения параметров ВС. Большая гамма детериорационного массива процесса преобразования объемных материалов в ВС требует применения различных методов их обнаружения и исследования с целью выработки путей их устранения и минимизации технологического увеличения светоослабления ВС. Для выявления грубых источников технологического увеличения затухания ВС применяют традиционные методы [8, 9, 41—45]. Для тонкого исследования и контроля ВС — объектов с микронными сечениями и многометровыми длинами — особо высокоэффективны различные микроструктурочувствительные методы методы молекулярной и  [c.53]

Стремление разрешить эти проблемы привело к более глу- бокому изучению физико-химических процессов, протекающих в изделиях в ходе их изготовления или применения. Соответст вующее научное направление получило название физика надежности . Оно сразу же потребовало использования новых средств исследования и контроля. Оказалось возможным, ис- пользуя ряд математических приемов и информацию о состоя- НИИ материалов или изделий, получаемую при применении ме- тодов физико-технического анализа и неразрушающего контроля, давать не только качественную оценку состояния, но в некоторых случаях и количественную оценку показателей надежности. Широко известны в этом направлении работы чл.-корр. АН СССР Б. С. Сотскова и его школы [6, 7]. В каче стве упомянутой математической процедуры для прогнозирования показателей надежности все шире стал применяться метод распознавания образов [8], а в число инструментальных методов исследования стала включаться большая совокупность методов локальной и интегральной диагностики [9]. Большое внимание новому направлению было уделено в США, где на ежегодных симпозиумах по надежности проблематика физики надежности уже в 1968 г. становится определяющей [10].  [c.7]


В гл. 8 описываются методы визуализации рентгеновского и -у-излучений. Автор дает оценку перспектив развития, современного состояния и предельных возможностей различных систем флуороскопии и рентгенотелевидения. Приводятся результаты экспериментального исследования системы, позволяющей контролировать сталь толщиной до 360 мм при чувствительности, сравнимой с чувствительностью пленочной радиографии. Описывается система контроля швов при подводной дуговой сварке со скоростью 1 м1мин. Большой интерес представляет проиллюстрированная примерами методика системного анализа применительно к проблеме визуализации. Значительные резервы повышения информативности широкого круга исследований и контроля связаны с использованием излагаемых методов сочетания флуороскопии и киносъемки (электрошлаковая сварка, кавитация, затвердевание металлов и других материалов). Несмотря на то что отечественная литература по этому вопросу весьма обширна, столь цельное изложение материала с разных  [c.12]

Коррозионные исследования предпринимают при решении многих задач, например при разработке новых материалов и средств защиты от коррозии, выборе конструкиионного материала, контроле качества материалов и защитных средств, коррозионном мониторинге и анализе коррозионных происшедствий. При этом в дополнение к стандартным методам химического анализа, металлографических исследований и механических испытаний используют специальные методы экспонирования в коррозионной среде, коррозионного мониторинга, а также электрохимических и физических методов исследования поверхности. Ниже дается краткий обзор этих методов.  [c.139]

Радиоактивные изотопы и ядерные излучения находят широкое применение а) в научных и технологических исследованиях, имеющих целью раскрытие механизма различных физикохимических процессов, анализ содержания весьма малых примесей в чистых и сверхчистых материалах, исследование механизма и скоростей процессов диффузии, строения вещества и др. б) при проведении геофизических работ, в геологоразведке, при добыче нефти, газа, а также других полезных ископаемых в) при организации контроля, а также механизации и авто-хматизации производства г) для борьбы с вредными последствиями зарядов статического электричества, и т.д.  [c.75]

Кафедрой проведены обширные исследования по выяснению механизма процессов текучести и твердения НСС по разработке методики и приборов определения свойств и контроля исходных материалов и получаемых смесей, а также стержней и форм из НСС по установлению оптимальных свойств НСС и технологии их получения по подбору недорогих недефицитных поверхностно-активных веществ (ПАВ) и по определению их пенообразующих свойств по изучению изменения газопроницаемости НСС по улучшению выбираемости стержней, изготовленных из НСС по устранению пригара, подбору красок и изучению их седиментационной устойчивости и по улучшению чистоты поверхности отливок по технологии получения наливных стержней и форм и модельной оснастки по созданию на Киевском заводе Большевик комплексно-механизированной и автоматизированной линии для получения НСС и изготовления из них стержней и форм. Эта линия успешно эксплуатируется с 1965 г.  [c.75]


Смотреть страницы где упоминается термин Исследование и контроль материалов : [c.150]    [c.163]    [c.9]    [c.454]    [c.95]    [c.6]    [c.431]    [c.244]   
Смотреть главы в:

Акустическая диагностика и контроль на предприятиях ТЭК  -> Исследование и контроль материалов



ПОИСК



Задачи рентгеноструктурного анализа в исследованиях и контроле качества металлических материалов

Контроль материалов



© 2025 Mash-xxl.info Реклама на сайте