Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения Лагранжа при различных силах

Уравнения Лагранжа при различных силах  [c.234]

УРАВНЕНИЯ ЛАГРАНЖА ПРИ РАЗЛИЧНЫХ СИЛАХ 235  [c.235]

Вариационные уравнения, соответствующие функционалам, приведенным в гл. 3 и 4, можно вывести обычным путем по правилам вариационного исчисления. Левые части их имеют энергетическую структуру и выражают работу обобщенных сил на соответствующих возможных обобщенных перемещениях (для вариационного уравнения Лагранжа) или обобщенных перемещений (деформаций) на возможных обобщенных силах (для уравнения Кастильяно), или их комбинаций в полных и различных смешанных формах. При этом возможными называются обобщенные перемещения (силы), которые удовлетворяют дополнительным условиям, наложенным на них, следующим из дополнительных условий данного функцио-  [c.142]


Лагранж в Аналитической механике рассматривает именно эту узкую форму принципа наименьшего действия. Однако указание на более широкую форму принципа содержится в его ранней работе где в 13 прямо указывается на то, что полученное Лагранжем в 8 этой статьи соотношение, тождественное с уравнением для изоэнергетической вариации, применимо в случае произвольных сил. Большинство ученых, разрабатывавших этот вопрос после Лагранжа, взяли у него как раз узкую форму принципа (в том числе Гамильтон и Якоби). Лишь Гельмгольц рассмотрел расширенную форму принципа. Однако Гельмгольц не счел нужным проводить отчетливое различие между принципом наименьшего действия в расширенной форме и принципом Гамильтона. Он основывался при этом на том безусловно верном положении, что оба эти принципа эквивалентны уравнению Даламбера и в силу этого являются следствиями друг друга. Тем не менее это не дает права отождествлять их, так как варьирование, применяемое в каждом из этих принципов, производится совершенно различными способами. Оба эти принципа получаются из соотношений при различных специализациях общего способа варьирования.  [c.221]

Прежде всего рассматривается задача о равновесии системы (статика системы), решение которой дается на основе принципа возможных перемещений. Вводится понятие обобщенных сил и формулируются аналитические условия равновесия. Здесь же можно кратко рассмотреть вопрос об устойчивости равновесия. Далее, как обычно, рассматривается принцип Даламбера и выводятся уравнения Лагранжа 2-го рода. Тем самым указывается метод решения основных задач динамики несвободной системы. Здесь же рассматриваются некоторые другие вопросы. Две системы активных сил, приложенных к определенной системе точек, называются эквивалентными, если их обобщенные силы совпадают при каком-нибудь выборе обобщенных координат (или если они выполняют одинаковую работу на любом возможном перемещении). Это определение вытекает из того факта, что активные силы входят в уравнения движения только через обобщенные силы, вследствие чего замена системы сил ей эквивалентной не сказывается на движении. Следует иметь в виду, что две эквивалентные в указанном смысле системы сил могут вызывать, конечно, различные реакции связей. Но в ряде задач эти реакции не представляют интереса и это различие можно игнорировать. Если это не так, то с помощью принципа освобождаемости реакции связей следует перевести в разряд активных сил.  [c.75]


Так как при выводе интеграла (49) на с1х, йу, йг мы не налагали ограничений, то постоянная в уравнении (50) будет универсальной. Интеграл Лагранжа в форме (50) будет совпадать с интегралом Бернулли (33), полученным для безвихревого стационарного движения идеальной жидкости. Интеграл Бернулли (32), полученный интегрированием уравнений Эйлера вдоль линии тока, отличается от интеграла Лагранжа, так как постоянная в интеграле (32) может быть различной для разных линий тока. Движение жидкости, при котором постоянная в интеграле Бернулли универсальна для всех линий тока, есть потенциальное движение. Пользуясь уравнениями (48), можно доказать очень важную теорему Лагранжа если для движущейся жидкости при действии сил, имеющих потенциальную функцию, в какой-нибудь момент времени существует потенциал скоростей, то течение будет потенциальным во все время движения. В самом деле, уравнения (48) можно записать в следующей форме  [c.280]

Подчеркнем, что рациональный выбор независимых координат может существенно упростить конкретный вид уравнений Лагранжа и т-ем самым облегчить решение задачи. Лагранж по этому поводу писал Так как эти уравнения могут иметь различные более или менее простые формы и, в частности, более или менее удобные для интегрирования, является не безразличным, в каком виде они представлены с самого начала пожалуй, одно из главных преимуществ нашего метода заключается в том, что он всегда дает уравнения каждой задачи в наиболее простой форме по отношению к примененным при этом переменным и дает нам возможность наперед судить о том, каковы те переменные, пользование которыми может нам максимально облегчить интегрирование [6, т. I, с. 403]. Действительно, пусть обобщенная координата qj выбрана так, что кинетическая энергия Т явно не зависит от нее, а соответствующая этой координате обобщенная сила Qj равна нулю, т. е.  [c.222]

Поэтому коэффициенты 1/ j можно трактовать как жесткости этих пружин. Наконец, последний член лагранжиана можно рассматривать как потенциал, вызванный движущими силами = Qj, не зависящими от координат, например гравитационными силами. (Силы могут, однако, зависеть от времени.) Что касается диссипативной функции (2.38), то ее можно считать вызванной наличием диссипативных (вязких) сил, пропорциональных обобщенным скоростям. Такова вторая интерпретация уравнения (2.39) [или функций (2.37), (2.38)]. Согласно этой интерпретации уравнения (2.39) описывают сложную систему масс, связанных пружинами и движущихся в вязкой жидкости под действием внешних сил. Таким образом, мы описали движение двух различных физических систем посредством одного и того же лагранжиана. Отсюда следует, что все результаты и методы исследования, связанные с одной из этих систем, могут быть непосредственно применены и к другой. Так, например, для изучения рассмотренных выше электрических контуров был разработан целый ряд специальных методов, которые применимы и к соответствующим механическим системам. Таким путем было установлено много аналогий между электрическими и механическими или акустическими системами. В связи с этим термины, применяемые при описании электрических колебательных контуров (реактанс, реактивное сопротивление и т. д.), вполне допустимы и в теории механических колебательных систем ).  [c.59]

Подобные общие принципы, в которых выставляется требование, чтобы интеграл некоторой функции состояния, распространенный на время, в течение которого происходит изменение состояния, имел экстремальное значение, иногда обязательно минимальное, выдвигались неоднократно. Эти принципы имели различную форму, соответствующую тем или другим условиям, налагаемым на варьирование, но при правильном выполнении требуемых варьирований все эти принципы приводят к одним и тем же дифференциальным уравнениям для рассматриваемых процессов. Первым из этих интегральных принципов был предложенный Мопертюи принцип наименьшего действия, в котором утверждалось, что при всех происходящих в природе явлениях среднее значение живой силы имеет минимальное значение. Условия варьирования, имеющие при этом место для механических задач, найдены только Лагранжей, и тем самым этот принцип был только им научно обоснован. Эти условия с современной точки зрения могут быть выражены требованием, чтобы полная энергия варьированного движения оставалась равной полной энергии действительного движения. Впрочем, к тем же результатам приводит принцип Гамильтона, при котором имеет место другое условие, а именно, что время не затрагивается варьированием. Это последнее условие имеет то преимущество, что мы имеем возможность присоединить к Я добавочные члены, относящиеся к внешним силам. Поэтому мы оставляем форму Гамильтона, которая теперь при сохранении прежнего условия варьирования гласит  [c.465]


Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]

СЛИ рассматривать материальную точку, которая обладает кинетической энергией системы и находится иод действием всех обобщенных сил системы, то уравнения Лагранжа второго рода представляют собой проекции уравнений движения. этой точки а координатные линии s-мерного пр(зстранства. Такое геометрическое предс гавление движения системы материальных точек в ряде случаев является полезным при исследовании движения различных механических систем.  [c.81]

Задача о движении системы с го-лономными связями формально всегда может быть решена, что частично объясняется возможностью исключения зависимых координат. Однако для задач с неголономными связями общего метода решения не существует. Правда, дифференциальные уравнения неголономных связей можно рассматривать совместно с дифференциальными уравнениями движения и тогда можно исключить зависимые величины с помощью метода множителей Лагранжа, который мы рассмотрим позже. Однако в более специальных случаях неголономных связей требуется индивидуальный подход к каждой задаче. При формальном изложении классической механики почти всегда предполагается, что любая имеющаяся связь является голономной. Это ограничение несколько сужает применимость общей теории, несмотря на то, что в повседневной практике нередко встречаются неголоном-ные связи. Причина этого состоит в том, что связи, наложенные на систему, обычно реализуются посредством различных поверхностей, стенок или стержней и играют заметную роль лишь в макроскопических задачах. Но современных физиков интересуют главным образом микроскопические системы, в которых все объекты (как внутри системы, так и вне ее) состоят из молекул, атомов и еще более мелких частиц, порождающих определенные силы. Понятие связи становится в таких случаях искусственным и встречается редко. Связи используются здесь лишь как математические идеализации, полезные при описании  [c.25]

Из общих рассуждений п. 32 следует, что так как в рассматриваемом нами случае все связи двусторонние, то множители Лагранжа будут однозначно определены при единственном условии, что уравнения связей независимы между собой, т. е. что функциональная матрица левых частей этих уравнений, рассматриваемых как функции от координат точек системы, имеет ранг, равный числу самих уравнений. В нашем случае число уравнений равно т — 1 = = 2 (и — 2) [поскольку должно быть исключено равенство (29), со-ответствз ющее i = a, i= ] в силу самого определения неизменяемой системы без лишних стержней, их левые части независимы (гл. XIV, н. 14) по отношению к 2 (и — 2) координатам различных узлов Fi (i < а, р).  [c.282]


Смотреть страницы где упоминается термин Уравнения Лагранжа при различных силах : [c.200]    [c.548]    [c.207]   
Смотреть главы в:

Основы классической механики  -> Уравнения Лагранжа при различных силах



ПОИСК



Структура уравнений Лагранжа для различных классов механических систем. Функция Лагранжа для систем с потенциальными и обобщенно-потенциальными силами

Уравнения Лагранжа



© 2025 Mash-xxl.info Реклама на сайте