Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорости и ускорения точек свободного твердого тела

Скорости и ускорения точек свободного твердого тела в общем случае  [c.179]

Общий случай движения свободного твердого тела. Уравнения движения свободного твердого тела. Разложение этого движения на поступательное движение вместе с полюсом и движение вокруг полюса. Определение скоростей и ускорении точек свободного твердого тела.  [c.7]


Скорости и ускорения точек свободного твердого тела  [c.36]

Движение свободного твердого тела может быть в частном случае плоскопараллельным при этом векторы со и е будут все время перпендикулярны плоскости, параллельно которой движется тело. Скорости и ускорения точек тела. Скорость  [c.154]

Угловую скорость и угловое ускорение относительного вращательного движения вокруг какой-либо точки тела называют в общем случае угловой скоростью и угловым ускорением свободного твердого тела. Эти величины не зависят от выбора точки тела. От выбора точки тела зависит только переносное поступательное движение тела.  [c.178]

Так как движение свободного твердого тела в общем случае можно представить как сложное движение, то и скорость, и ускорение какой-либо точки М этог(/ тела можно вычислить соответственно и гео-  [c.182]

Рассмотрен способ задания текущего положения свободного твердого тела при помощи г-координат — шести чисел, равных длинам отрезков, соединяющих точки неподвижной базы с точками те.ла. На основе г-координат разработан метод определения законов движения звеньев промышленных роботов. Знание этих законов позволяет оценить точность функционирования робота, силы, действующие на его звенья, их скорости и ускорения.  [c.172]

Последняя, восьмая лекция по кинематике содержит теорию плоскопараллельного движения твердого тела. Закон распределения скоростей и ускорений в теле при плоскопараллельном движении может быть определен либо как следствие кинематики свободного твердого тела, либо из рассмотрения сложного движения точки. В случае необходимости эта тема может быть опущена.  [c.69]

С помощью полученных соотношений можно рассмотреть деформацию модели под действием собственной тяжести и, определив сжимаемость модели, найти скорости распространения в ней продольных колебаний при различных значениях координаты г. Будем рассматривать модель как систему, заполненную жидкостью с плотностью рж- Заметим, что каждая сфера, принадлежащая слою М, контактирует с тремя сферами (/ +1)-го слоя под давлением рл - и с тремя сферами слоя N — 1 под давлением Если кажущаяся масса сферы равна (4я/3) (рт — Рж)ё , где рх — плотность твердого тела, а д —ускорение свободного падения, то условие равновесия сил, действующих на сферу, будет иметь вид  [c.23]

Вращением твердого тела вокруг неподвио1сной точки называют такое движение, при котороль одна точка тела остается все время неподвижной. Это вращение часто называют сферическим движением твердого тела в связи с тем, что траектории всех точек тела при таком движении располагаю си на ( оверхностях сфер, описанных нз неподвижной точки. Тело, совершаюшее вращение вокруг неподвижной точки, имеет тр сгепени свобод , , так как закрепление одной точки тела уменьшает число степеней свободы на три единицы, а свободное тело имеет Н есть степеней свободы. Одной из главных задач при изучении вращения тела вокруг неподвижной точки является установление величин, характеризующих это движение, т. е. углов Эйлера, угловой скорости, углового ускорения, н вывод формул для вычисления скоростей и ускорений точек тела.  [c.167]


После вступления начинается изложение кинематики. Существенная особенность предлагаемой методики в том, что ее содержание не исчерпывается кинематикой точки и абсолютно твердого тела. Она трактуется как кинематика системы материальных точек. Материальная точка и абсолютно твердое тело являются простейшими примерами системы. Сначала, конечно, рассматривается свободная материальная точка. Указываются различные способы описания (ариф-метизации) ее движения. Наряду с обычными способами (векторный, координатный, естественный) отмечается и способ,, связанный с введением трех произвольных обобщенных координат. Вводятся понятия скорости и ускорения точки. Далее рассматривается точка, на которую наложены одна или две стационарные удерживающие голоном ные связи. Рассматриваются вопросы задания движения точки и определения ее скорости и ускорения.  [c.73]

Итак, любое движение свободного твердого тела можно сосгавить из поступательного движения вместе с подвижной системой координат и сферического движения относительно этой системы координат. Для относительного сферического движения можно ввести угловую скорость о) и угловое ускорение Ё, которое является первой производной по времени от (7), как в случае вращения тела вокруг неподвижной точки.  [c.320]

Угловую скорость и упювое ускорение опюсительного вращательного движения вокруг какой-либо точки тела называют в общем случае угловой скоростью и угловым ускорением свободного твердого тела. Эти величины не зависят  [c.320]

Теорема о сложении ускорений. Пусть подвижная система Охуг движется относительно неподвижной как свободное твердое тело. Обозначим скорость и ускорение начала (полюса) О по отношению к осям через Vq и Wq, а мгновенную угловую скорость и угловое ускорение самого трехгранника Oxyz по отношению к тем же осям Q ti через м и е (рис. 158). Рассмотрим точку М. совершающую движение, которое вообще не зависит от движения системы Oxyz. Обозначим через р и г ее абсолютный и относитель-7 ный радиусы-векторы, а через р , радиус-вектор точки О. Тогда в любой момент времени  [c.162]

Так как движение свободного твердого тела в общем случае можно представить как сложное движение, то и скорость, и ускорение какой-либо точки М этого тела можно вычислить соответствениэ по теоремам сложения скоростей и ускорений. Так для скорости уточки М (рис. 167)  [c.179]

Со времен Галилея известно, однако, что именно этим свойством отличается поле тяготения, в котором все массы приобретают одинаковые ускорения. Масса в поле тяготения является количественной характеристикой силы, с которой тело притягивается к другим телам ( тяжелая масса). С другой стороны, при движении тела под действием других сил, отличных от сил тяготения, масса является количественной характеристикой инертности тел, т. е. их способности замедлять процесс изменения собственной скорости ( инертная масса). Понятия инертной и тяжелой масс, казалось бы, не имеют между собой ничего общего, поскольку первое из них относится к движению в любых нолях, а второе — только в гравитационных полях. Тем более примечательными оказались эксперименты Р. Этвеша (1848—1919), показавшего (с достаточно большой точностью), что обе массы пропорциональны друг другу, и, следовательно, выбором единиц их можно сделать просто равными. Этот результат, первоначально казавшийся случайным, Эйнштейн воспринял как фундаментальный физический принцип, давший возможность сделать вывод о локальной эквивалентности полей сил инерции и тяготения и тем самым установить принцип эквивалентности инертной и тяжелой масс ). Следующее простое рассуждение, принадлежащее Эйнштейну, иллюстрирует эту мысль. Предположим, что в кабине лифта свободно падает твердое тело. Если кабина лифта покоится относительно Земли, то тело будет двигаться в локально однородном поле тяжести с постоянным ускорением g. Пусть теперь одновременно с телом свободно падает и кабина лифта. При одинаковых начальных условиях для кабины и тела последнее будет находиться в покое относительно кабины. В ускоренной (неинерциальной) системе отсчета, связанной с кабиной, на тело наряду с силой тяжести бу,дет действовать равная и противополоокная ей по направлению сила инерции, и под действием этих двух сил тело будет находиться в равновесии ( невесомость ).  [c.474]


Наиболее существенные отличительные особенности рецензируемого пособия 1) полнее, чем в имеющейся учебной литературе, освещены мировоззренческие вопросы в теоретической механике 2) введен ряд новых разделов в соответствии с тенденциями развития научно-техни-ческого прогресса, например, однородные координаты, применяемые при описании роботов-манипуляторов. что потребовало существенно перестроить раздел кинематики твердого тела основные теоремы динамики изложены не только в неподвижных, но и в подвижных (неинерциальных) системах координат в разделе Синтез движения рассмотрены вопросы сложения не только скоростей, но и ускорений. При этом получен ряд новых результатов сравнение механических измерителей углов поворота и угловых скоростей твердых тел основы виброзащиты и виброизоляции, динамические поглотители колебаний основы теории нелинейных колебаний, включающей изложение основ методов фазовой плоскости, метода малого параметра, асимптотических методов, метода ускорения 3) в методических находках, позволивших углубить содержание курса и уменьшить его объем впервые обращено внимание на то, что условия динамической уравновешенности ротора и условия отсутствия динамических реакций в опорах твердого тела при ударе — это условия осуществления свободного плоского движения твердого тела полнее и глубже развиты аналогии между статикой, кинематикой и динамикой полнее изложены электромеханические аналогии и показана эффективность применения уравнений Лагранжа-Максвелла, для составления уравнений контурных токов сложных электрических цепей получение теоремы об изменении кинетической энергии для твердого тела из соотношения между основными динамическими величинами и многие другие.  [c.121]


Смотреть страницы где упоминается термин Скорости и ускорения точек свободного твердого тела : [c.191]    [c.163]    [c.407]    [c.247]   
Смотреть главы в:

Основы классической механики  -> Скорости и ускорения точек свободного твердого тела



ПОИСК



407 — Точка — Скорости и ускорения

Скорости и ускорения точек свободного твердого тела в общем случае

Скорости и ускорения точек тела

Скорость и ускорение

Скорость точек твёрдого тела

Скорость точки

Тело свободное

Тело твердое свободное

Точка свободная

Ускорение точки

Ускорения точек твердого тела



© 2025 Mash-xxl.info Реклама на сайте