Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Показатели надежности элемента системы

ПОКАЗАТЕЛИ НАДЕЖНОСТИ ЭЛЕМЕНТА СИСТЕМЫ  [c.69]

Современный этап развития технических систем характери зуется увеличением функциональной и структурной избыточности с целью уменьшения влияния на работоспособность системы выхода из строя отдельных ее элементов. Это, в свою очередь, создает определенные трудности при формировании понятия отказа элемента системы и получении количественного показателя его надежности. Вместе с тем такой показатель необходим в условиях раздельного изготовления и контроля надежности элементов. Он необходим также при решении задачи о распределении по элементам заданного числового значения показателей надежности системы в целом, для определения показателя надежности системы по данным испытаний элементов и т. д. В связи с изложенным рассмотрим одно из возможных приближенных решений задачи по формированию показателя надежности элемента системы.  [c.69]


Таким образом, показатель надежности элемента системы вида (2. 44) позволяет приближенно учесть степень влияния возможного выхода той или иной характеристики за пределы установленного допуска.  [c.79]

Все они являются причиной возникновения в машине процессов износа, коррозии, деформации, ползучести и др., которые приводят к повреждениям отдельных элементов V к-повреждения вызывают изменения выходных параметров отдельных элементов, узлов и подсистем, что, в свою очередь, приводит к изменению во времени выходных параметров всей системы Xi ( ) . .. (О- Опасность выхода этих параметров за установленные пределы и формирует согласно рассмотренным в главе 3 моделям отказов показатели надежности всей системы.  [c.193]

Выше уже отмечалось, что для многих задач надежности в энергетике бывает достаточно говорить о системах кратковременного действия (п. 1.6.3), когда эффективность системы полностью определяется ее состоянием в рассматриваемый момент времени. Вероятность пребывания системы в том или ином состоянии зависит от безотказности и ремонтопригодности отдельных ее элементов, т.е. от тех или иных показателей надежности элементов. Чем менее надежны элементы системы, тем чаще она будет находиться в состояниях, характеризующихся более низкими значениями выходного эффекта.  [c.97]

В общих чертах порядок расчета эффективности сложных систем кратковременного действия заключается в следующем определяются назначение системы, ее функции и условия работы выбирается приемлемая в данном случае количественная мера оценки качества функционирования системы производится разбиение сложной системы на отдельные элементы составляется функциональная схема системы вычисляются показатели надежности элементов, характеризующие вероятность состояния каждого элемента по формуле умножения вероятностей вычисляются вероятности всех возможных состояний системы на основании вероятностей состояния отдельных элементов (при условии независимости их отказов) оцениваются значения комплексных показателей надежности, характеризующих эффективность функционирования системы.  [c.241]

Статистические оценки показателей надежности системы по надежности элементов. Если доверительное оценивание показателей надежности элемента не представляет особой сложности даже при произвольных распределениях, то такая оценка для сложных систем прямыми методами практически бывает невозможной. Это объясняется тем, что специальные испытания сложных систем энергетики для получения достоверной статистической информации требуют длительного времени и больших затрат, особенно если испытываются высоконадежные системы, а потому практически и не проводятся. Можно, конечно, набирать статистическую информацию о надежности сложной системы в результате реальной эксплуатации, однако, во-первых, такая информация будет получена постфактум, а во-вторых, иногда это и в принципе невозможно, если наблюдаемая система постоянно развивается и совершенствуется, т.е. в этом случае нарушается принцип однородности статистической выборки. К таким постоянно развивающимся техническим системам относятся и различные СЭ и ЭК в целом.  [c.272]


В соответствии с представлениями о действии энергии на машину при ее эксплуатации на рис. 1 показана схема формирования показателей надежности сложной системы. Энергия, действующая на машину при ее эксплуатации W, слагается из воздействия энергии окружающей среды Wi, энергии рабочих процессов машины, потенциальной энергии технологических процессов (например, напряжения, накопленные в отливке) Wi и энергии воздействия на машину при ее ремонте и техническом обслуживании W4. Проявляясь в механической, тепловой, химической, электромагнитной и других формах, энергия IV определяет условия работы машины и ее элементов — возникающие нагрузки, напряжения, температуры, скорости и ускорения, химические воздействия, электромагнитные силы и др.  [c.89]

В последнее время в отечественной промышленности и за рубежом проводятся исследования по определению показателей надежности элементов гидравлических систем интенсивности отказов % и долговечности L. Естественно, что надежность одних и тех же элементов, используемых в различных системах, будет  [c.195]

В теории надежности сосуществуют два направления, родственные по идеологии и общей системе понятий, но отличающихся по подходу. Установившихся названий для этих направлений нет. Первое направление - системная, статистическая или математическая теория надежности, второе направление можно условно назвать физической теорией надежности. Объектом системной (статистической, математической) теории надежности служат системы из элементов, взаимодействующих между собой в смысле сохранения работоспособности по логическим схемам графам, деревьям отказов и т.п. Исходную ин( рмацию в системной теории надежности, как правило, образуют показатели надежности элементов, определяемые путем статистической обработки результатов испытаний и (или) эксплуатационных данных. Задачи системной теории надежности решают в рамках теории вероятностей и математической статистики, т.е. без привлечения физических моделей отказов и тех физических явлений, которые вызывают и сопровождают возникновение отказов.  [c.12]

Безотказность системы с параллельным соединением элементов возрастает с увеличением кратности резервирования. Так, уже при однократном резервировании (дублировании) в случае, когда показатель надежности элемента Pq = 0,99, для системы получаем Р =  [c.29]

Расчетные формулы показателей надежности восстанавливаемой системы с последовательным соединением элементов  [c.231]

При постановке большинства задач показатели надежности элементов считают заданными. Технические системы радиоэлектроники, автоматики и вычислительной техники состоят в основном из элементов массового производства и работают в сравнительно однородных условиях. Ресурсные испытания элементов этих систем относительно просты, а условия эксплуатации допускают воспроизведение в лабораторных условиях. Статистическая обработка результатов испытаний позволяет выбрать подходящие аналитические зависимости для изменения показателей во времени и оценить численные значения необходимых параметров. Для невосстанавливаемых элементов обычно ищут подходящие аналитические аппроксимации либо для вероятности безотказной работы Р t), либо для интенсивности отказов (t).  [c.29]

Из формул (2.22)—(2,24) видно, как показатели надежности зависят от кратности резервирования п— 1. Так, уже при однократном резервировании (дублировании), если показатель надежности элемента Pq = 0,99, для системы получаем Р = = 0,9999. Математическое ожидание срока службы системы согласно формуле (2,24) увеличивается в 1,5 раза.  [c.33]

Основные понятия теории надежности носят универсальный характер и в принципе применимы к объектам самой различной природы и структуры. Эти объекты могут включать агрегаты, узлы, блоки, которые в свою очередь могут быть механическими, электрическими, химическими, биологическими и другими системами. Примером служит задача о надежности системы, состоящей из объекта управления, системы управления и человека-оператора. Практическое применение методов системной теории надежности для расчета ряда объектов связано с серьезными затруднениями. Сложный характер взаимодействия элементов и подсистем между собой, а также с окружающей средой, трудность или невозможность получения достаточной информации о показателях надежности элементов типичны для многих классов объектов, в том числе для большинства машин и конструкций (см. 1.3). Единственный путь для преодоления трудностей состоит в развитии направления теории надежности, которое естественным образом включает описание физических процессов взаимодействия объекта с окружающей средой, переход системы в неработоспособное состояние как физический процесс. При этом описание поведения объекта с точки зрения его работоспособности становится органически связанным с описанием процесса функционирования системы.  [c.34]


Модели обоих типов рассмотрены в гл. 4 в связи с задачами механики разрушения. (Отдельные зерна или волокна материала выполняют роль элементов, число которых в образце может быть весьма велико. Разрушение может происходить как по схеме диффузной модели [16], так и по схеме фронтальной модели —вследствие развития магистральной трещины [9]. Модели механики разрушения распространены на прогнозирование показателей надежности машинных агрегатов, состоящих из большого числа однотипных элементов [23 . При этом рассмотрены некоторые новые вопросы, представляющие интерес с точки зрения проектирования и эксплуатации таких машин установление связи между показателями надежности элементов, полученными на основе программных ресурсных испытаний изолированных элементов, и соответствующими показателями при работе элементов в системе прогнозирование остаточного ресурса машин с учетом показателей надежности элементов, полученных при стендовых испытаниях, данных о предыстории нагружения и последовательности отказов в данной машине установление оптимальных сроков очередных профилактических мероприятий и снятия оборудования с эксплуатации на основании тех же данных и т. п.  [c.190]

Однако для машиностроения более характерно наличие таких выходных параметров отдельных элементов, которые участвуют в формировании выходных параметров всего изделия (параметры типа Ха см. на рис. 56). В этом случае элементы нельзя считать независимыми и для каждого из них определять показатели надежности (например, вероятность безотказной работы). Здесь необходимо рассматривать систему или подсистему в целом и учитывать как участие каждого элемента в формировании выходного параметра системы, так и их взаимное влияние на работоспособность (выходные параметры типа Хд).  [c.179]

Например, если изделие содержит п = 1000 последовательных элементов, а вероятность безотказной работы каждого элемента достаточно высока и составляет = 0,9999, то для системы в целом получим (см. гл. 4, п. 2) Р (t) = Р —(0,9999)0,912. Если этот показатель не удовлетворяет разработчика, то статистика отказов изделия ничего не даст, так как вероятность отказа каждого элемента одинакова и поток отказов будет содержать различные отказы. Путь решения этой проблемы, во-первых, в анализе не потока отказов, а потока повреждений (см. рис. 73), который проявляется при ремонтных работах, и, во-вторых, в построении и анализе модели надежности сложной системы (см. гл. 4, п. 3).  [c.181]

В существующей практике проектирования и эксплуатации ЭЭС преимущественно используются опосредованные нормативы [80]. Нормативное значение показателя надежности системы (вероятность отсутствия любого дефицита мощности в часы максимальной нагрузки системы) находит применение в качестве вспомогательного показателя для выбора величины резервов мощности в концентрированных узлах ЭЭС при проектных проработках вариантов ее развития [81, 82]. Кроме того, сформированные варианты проверяются на способность обеспечивать бесперебойное электроснабжение при выходе из строя (или выводе в ремонт) любого наиболее крупного элемента системы, а также обеспечивать уровень функционирования не ниже заданного при более тяжелых режимах [81, 82]. В системах газо-, нефте-, теплоснабжения и ЭК в целом прямые нормативы надежности в настоящее время отсутствуют.  [c.172]

Наличие связей — основной признак системы, что отличает ее от конгломерата (набора) элементов. Однако для обеспечения целей системы нет необходимости всегда учитывать все элементы и связи. Например, при установлении надежности системы машина в некоторых условиях внешней среды (условиях эксплуатации) можно ограничиться определением показателей надежности ее деталей и узлов и установлением связей между наработками этих элементов, не рассматривая таких элементов системы, как кристаллографическая структура материалов этих деталей и узлов. В то же время, если цель исследования состоит в определении физических основ отказов, учитывать структуру материалов необходимо.  [c.9]

Очевидно, что чем выше надежность элементов, формирующих систему (оборудования), тем (при прочих равных условиях) выше надежность системы. Кроме показателей надежности, однако, речь идет и о других технических характеристиках основного оборудования - тех, которые оказывают существенное влияние на надежность системы. Среди этих характеристик основное значение имеет его маневренность, т.е. диапазон и скорость изменения основных режимных параметров.  [c.106]

Для простых структур указанного типа хорошо разработан математический аппарат расчета показателей надежности для систем без восстановления (п. 4.2.1) и с восстановлением (п. 4.2.2), имеющих различные особенности (наличие независимых или зависимых элементов обеспечение нагруженного, ненагруженного или скользящего резервирования). В начале п. 4.2.2 дается характеристика общей марковской модели процесса функционирования системы, поскольку на ее основе наиболее просто может быть обеспечено определение показателей надежности простых восстанавливаемых систем.  [c.149]

Последовательное соединение независимых элементов. Соединение п различных элементов при неограниченном восстановлении. Известны интенсивности отказов X, и интенсивности восстановлений 1,- для каждого i-ro элемента. Каждый элемент последовательной системы отказывает независимо от других элементов и так же независимо восстанавливается (неограниченное восстановление, т.е. для каждого элемента имеется свой ремонтный орган). В этом случае для каждого элемента с восстановлением может быть найден (п. 4.2.2) любой интересующий показатель надежности Г,-,  [c.172]

Коэффициент сохранения эффективности является очень удобным комплексным Показателем надежности для тех систем, у которых большее значение выбранной характеристики является наилучшим. Однако при анализе надежности СЭ часто приходится рассматривать такие характеристики, как ущерб, недоотпуск продукции и т.п. В этом случае отказы отдельных элементов системы лишь увеличивают значение указанных характеристик, которые по смыслу сами носят негативный характер.  [c.226]


В связи с этим при дальнейшем изложении мы будем рассматривать ненормированное значение математического ожидания выходного эффекта системы, получаемого с учетом реальной надежности ее элементов, имея в виду, что с помощью этой величины могут быть получены значения различных комплексных показателей надежности.  [c.226]

В последнем случае приходится оценивать показатели надежности системы по результатам испытаний (или эксплуатации) отдельных ее элементов [75, 78].  [c.272]

Использование статистического моделирования для расчетов надежности. Статистическим моделированием называется численный метод решения математических задач при помощи моделирования структур, процессов функционирования и взаимосвязи элементов системы (объекта исследования) с использованием случайных последовательностей величин, характеризующих эти элементы, с последующей статистической оценкой различных показателей системы по получаемой совокупности реализаций.  [c.275]

Каждая подсистема характеризуется некоторым выбранным в зависимости от назначения системы показателем надежности. Значение этого показателя надежности зависит от того, какое число резервных элементов имеется в данной подсистеме, т.е. показатель надежности есть функция числа резервных элементов. Будем в дальнейшем эту функцию обозначать для /-й подсистемы через R- (х ), где л , - количество резервных элементов этой подсистемы.  [c.288]

Показатель надежности системы в целом есть некоторая функция, зависящая от значений показателей надежности отдельных подсистем, т.е. она является функцией от всего набора резервных элементов каждой из подсистем х , х ,—, х , т.е. R (х ,..., х ) = / (R (xj,...  [c.288]

Прямая задача. Требуется найти такое число резервных элементов для каждого участка резервирования, чтобы требуемый показатель надежности системы в целом обеспечивался при минимальных суммарных затратах на все резервные элементы.  [c.290]

Обратная задача. Требуется найти такое количество резервных элементов для каждого участка резервирования, чтобы при заданных допустимых затратах на систему в целом обеспечивался максимально ) возможный показатель надежности системы.  [c.290]

Представим себе процесс создания оптимальной резервированной системы в виде следующего многошагового процесса. Рассматривает ся система, состоящая из п подсистем, причем на начальном шаге процесса предполагается, что ни у одной из подсистем нет резервных элементов. На первом шаге процесса оптимального построения системы отыскиваем такую подсистему, добавление к которой одного резервного элемента дает наибольший относительный прирост показателя надежности системы в целом на единицу стоимости. На втором шаге отыскивается следующая подсистема, которая характеризуется тем, что добавление к ней одного резервного элемента дает опять наибольшее относительное приращение результирующего показателя надежности системы в целом. На втором шаге процесса из рассмотрения не исключается и та подсистема, которая была найдена на первом шаге, поэтому в общем случае этой новой подсистемой может быть та же подсистема, что и в первый раз. Аналогичным образом процесс построения оптимальной системы продолжается далее.  [c.291]

Улучшения коэффициентов сохранения эффективности F системы можно добиться несколькими принципиально различными путями, в том числе путем изменения структуры и принципа ее функционирования, а также улучшения показателей надежности отдельных элементов системы без изменения структуры системы.  [c.304]

Предварительно определим зависимость показателя F от надежности каждого из элементов системы. Разделим все множество из 2" состояний системы на два подмножества подмножество с состояниями системы, при которых для некоторого фиксированного i-ro элемента 5, = 1, и подмножество с состояниями системы, при которых  [c.305]

Если элементы системы имеют высокие показатели надежности, такие, что < . 1/п для всех i = 1, 2,..., п, то можно приближенно записать  [c.307]

Оптимизация емкостей накопителей в многофазных системах и запасов в них. Расчет вероятности безотказной работы и коэффициента готовности многофазных систем (см. п. 4.2.4) показывает, что характеристики надежности системы существенно зависят не только от надежности элементов, но и от производительности элементов, емкости накопителей, соотношения запаса производительности и запасов продукции. При оптимальном выборе вектора Zq = z i, i = = 1, iV - 1 удается значительно улучшить показатели надежности системы только за счет перераспределения запасов внутри системы и их согласования. Далее рассматриваются две задачи оптимизации емкостей накопителей по критерию максимума коэффициента готовности для систем с равными и неравными производительностями фаз.  [c.331]

Однако на практике приходится ставить задачу не только об оценке показателей надежности системы, но и об оптимальном обеспечении ее и резервными блоками, и запасными элементами с учетом ограниченных суммарных затрат.  [c.338]

В сложных системах процесс изменения начальных параметров характеризуется большим числом Взаимосвязей, разнообразными воздействиями на систему и возникновением неодинаковых по природе процессов старения. Все это приводит к формированию основных показателей надежности всего изделия и в первую очередь к пок азателям степени его удаленности от предельного состояния. В соответствии с представлением о действии энергии на машину при ее эксплуатации (см. гл, 1, п, 3) на рис. 62 показана схема формирования показателей надежности сложной системы. Энергия, действующая на машину при ее эксплуатации , слагается из воздействий энергии окружающей среды энергии рабочих процессов машины Wпотенциальной энергии технологических процессов — напряжения в отливке, в сварочном шве, в поверхностном слое обработанной детали и т, п. и энергии воздействий на машину при ее ремонте и техническом обслуживании 4. Проявляясь в виде механической, тепловой, химической, электромагнитной и в других формах, энергия определяет условия работы. машины и ее элементов нагрузки, напряжения, температуры, скорости и ускорения, химические воздействия, давления, электромагнитные силы и др.  [c.193]

Раздел четвертый посвящен описанию различных моделей, которые могут быть использованы для расчета численных значений рассмотренных в разд. 2 показателей надежности различных СЭ и их оборудования. При описании моделей анализа надежности простых систем ( 4.2) выделены невосстанавливаемые и восстанавливаемые системы, а также системы с сетевой структурой и с временным резервировани ем. Эти модели применимы для случаев, когда режимные взаимодей ствия между элементами или подсистемами например, условия ус тойчивости параллельной работы электростанций в электроэнергети ческих системах, гидравлическое взаимодействие режимов в трубо проводных системах, изменения пропускной способности электропередачи или трубопроводов в зависимости от режимов работы сис-  [c.13]

Поясним сказанное на простом (условном) примере. Для дублированной системы, предназначенной для выполнения кратковременных задач, удобным показателем надежности является коэффициент готовности. В то же время для каждого элемента, образующего эту дублированную систему, задание показателя надежности типа коэффициента готовности может оказаться неудобным. Удобнее для каждого элемента задавать как минимум два показателя среднее время безотказной работы и среднее время восстановления, так как эти характеристики позволяют рассчитьшать коэффициент готовности системы в целом для различных режимов регламентных работ, различных форм восстановления и т.п.  [c.104]


Составление и решение уравнений для марковского процесса. Если задано четкое словесное описание принципа функционирования и восстановления системы, то можно определить, в каких состояниях она может находиться и какие переходы из состояния в состояние возможны. Задав определенный критерий отказа, все состояния системы можно подразделить на два класса работоспособные и неработоспособные. Если известны также количествейные показатели надежности отдельных элементов системы (интенсивности отказов) и длительности их ремонта (интенсивности восстановления), то может быть построен граф переходов, у которого вершинами будут возможные состояния системы, а ребрами - возможные переходы. При подобном описании марковского процесса удобно ребрам графа приписать веса, равные интенсивностям соответствую-  [c.162]

Система с последовательным соединением элементов, комбинированным резервом времени и необесиенивающими отказами. Система имеет кроме индивидуального резерва времени Тд,- еще и общий непо-полняемый резерв времени т . Резерв Хд,- является мгновенно пополняемым, т.е. сразу же после восстановления работоспособности он восстанавливается до исходного уровня. Показатели надежности системы существенно зависят от того, как взаимодействуют между собой обе составляющие резерва и какова стратегия их использования. Поэтому далее рассматриваются различные модели, учитывающие эти факторы. Общее правило состоит, однако, в том, что сначала используется индивидуальный резерв, а после него (или параллельно с ним) - непополняемый общий резерв.  [c.213]

Для случая нескольких ограничиванЯцих факторов обратная задача оптимального резервирования должна быть сформулирована следующим образом требуется найти такое количество резервных элементов для каждого участка резервирования, чтобы при заданных допустимых затратах на систему в целом по ресурсам каждого типа обеспечивался максимально возможный показатель надежности системы.  [c.290]

SJL3. Оптимизация надежности элементов сложных систем. В процессе разработки сложных систем возникает вопрос об оптимальном распределении ограниченных средств для достижения требуемых показателей качества функционирования. Качество функционирования сложных систем количественно оценивается показателями, формулируемыми в каждом конкретном случае в зависимости от характера системы, ее назначения и критерия выполнения требуемых операций. Ограничивающим фактором для одних систем может являться стоимость, для других - масса и габариты возможны и другие ограничивающие факторы [134].  [c.303]


Смотреть страницы где упоминается термин Показатели надежности элемента системы : [c.75]    [c.33]    [c.214]    [c.151]    [c.228]   
Смотреть главы в:

Основы теории надежности ракетных двигателей  -> Показатели надежности элемента системы



ПОИСК



Надежность элементов III

Показатели надежное

Показатели надежности

Показатели надежности некоторых элементов гидравлических систем

Показатели надежности элемента



© 2025 Mash-xxl.info Реклама на сайте