Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные параметры транзисторов

Параметры транзисторов зависят от схем включения и режимов работы. Наиболее распространены две схемы включения с общей базой (ОБ) и с общим эмиттером (ОЭ). Основными параметрами транзисторов. в этих схемах являются коэффициенты усиления по току а (для схемы ОБ) и (для схемы ОЭ), граничная чистота усиления по току а также предельно-  [c.151]

Выбор режима работы триода. Выбор схемы и режима работы, а также расчет усилителей на транзисторах, наиболее целесообразно производить в такой последовательности. Вначале, исходя из требований к усилителю по статическим характеристикам и типовым параметрам, выбирается тип транзистора, схема включения и режима работы по постоянному току. Рабочая точка выбирается в соответствии с формой усиливаемого сигнала по усредненным статическим характеристикам транзистора. Для данной рабочей точки по соответствующим характеристикам определяются значения основных параметров транзистора. Затем аналитическим путем производится расчет коэффициента усиления, полосы пропускания и других параметров усилителя. Такой метод позволяет быстро производить оценку основных параметров схемы и правильно выбирать режим работы каскада.  [c.151]


ОСНОВНЫЕ ПАРАМЕТРЫ ТРАНЗИСТОРОВ, ПРИГОДНЫХ ДЛЯ УПРАВЛЯЮЩИХ ЭЛЕМЕНТОВ  [c.65]

Основные параметры транзисторов  [c.174]

Перечислить основные параметры транзистора.  [c.175]

Основными параметрами транзисторов являются коэффициент усиления по току допустимая мощность, рассеиваемая коллектором максимальное обратное напряжение, прикладываемое к эмиттерному и коллекторному переходам максимальный ток эмиттера и коллектора обратный ток коллектора и диапазон рабочих температур.  [c.147]

В табл. 9 приведены основные эксплуатационные параметры транзисторов, применяемых в схемах автоматических противокоррозионных устройств.  [c.65]

Таблица 9 Основные эксплуатационные параметры транзисторов Таблица 9 Основные <a href="/info/679670">эксплуатационные параметры</a> транзисторов
При подключении тахометра в цепь транзистор VT2 переключается в состояние насыщения ток базы протекает по цепи резистор RIO — транзистор — резистор R5. Конденсаторы С6 и С5 заряжаются током, протекающим по цепи R7—pV—R4—С5—VT2—R5. При этом транзистор VT находится в состоянии насыщения, так как напряжение между эмиттером и коллектором меньше падения напряжения на резисторе R8. В момент размыкания контактов прерывателя образуется стартовый импульс, который переключает транзистор VTI в состояние насыщения, и через вольтметр проходит импульс с длительностью, определяемой параметрами разрядной цепи конденсатора С5 и резистора RIO. Транзистор VT2 под действием обратных связей переключается в состояние отсечки. Время отсечки транзистора VT2 зависит от длительности разряда конденсатора С. э через открытый транзистор VTI—R5—VD3—RIO. Частота импульсов, подаваемых мультивибратором на измерительный прибор, равна частоте срабатывания прерывателя, а время разряда конденсатора выбирается меньшим, чем время между последовательными его размыканиями при максимальном значении п. Таким образом, измерительный прибор показывает силу среднего эффективного тока, которая пропорциональна частоте импульсов, получаемых на мультивибраторе. Амплитуда силы тока, подаваемого мультивибратором, регулируется с помощью резистора R7 в процессе настройки тахометра. Для уменьшения погрешности при изменении температуры окружающей среды в схеме предусмотрен терморезистор R3. Защита транзистора VTI осуществляется диодом VD2. Основные параметры отечественных тахометров приведены в табл. 11.19.  [c.336]


Основными параметрами, которыми следует руководствоваться при выборе транзистора, являются  [c.471]

Параметры транзисторов при старении изменяются незначительно, поэтому считаем => 0. Величина Rв в основном определяется входным сопротивлением транзистора следующего каскада и, следовательно, Ср = 0. Как уже отмечалось, при рас-  [c.732]

Расчет допусков на влажность. Как уже отмечалось, под влиянием влаги параметры транзисторов и конденсаторов практически не меняются, поэтому их погрешности можно принять равными нулю. Это относится и к / н, так как его величина в основном определяется параметрами транзистора. Следовательно, погрешности увлажнения будут определяться изменением сопротивлений резисторов МЛТ. По ТУ на резисторы МЛТ для сопротивлений до 1 МОм коэффициент увлажнения находится в пределах от —3 до +6%. Полагая распределение КУ нормальным и симметричным, имеем  [c.732]

В тайл. 23. 30 приведены основные параметры маломощных низкочастотных и высокочастотных германиевых транзисторов.  [c.720]

Надежность и экономичность — вот основные параметры, позволившие транзисторам очень быстро совершить революционный переворот в электронике. Но этот переворот не успел закончиться, как на смену схемам с дискретными компонентами на транзисторах стали приходить интегральные схемы. Собственно говоря, во многих случаях — особенно при больших мощностях сигналов — интегральные схемы прекрасно работают в в комплексах с отдельными, дискретными транзисторами, которые и используются в качестве мош ных элементов.  [c.79]

Для обеспечения таких же, как и в радиоприемнике А-370 , режимов работы по постоянному току транзисторов УРЧ, УПЧ, преобразователя частоты и первых двух каскадов УЗЧ сопротивление резистора К27 выбрано равным 330 Ом. Для повышения стабильности основных параметров радиоприемника при колебаниях напряжения источника питания и для повышения устойчивости работы радиоприемника при отрицательной температуре окружающей среды все радиочастотные каскады и предварительные каскады УЗЧ стабилизированы по напряжению с помощью стабилитрона УОЗ.  [c.17]

Посмотрев на эту диаграмму, специалист сразу определит шум в данной схеме, хотя его частотные компоненты и меньше полезного сигнала почти в 2000 раз, в целом настолько сильный, что будет создавать значительные звуковые помехи. Следовательно, необходимо выявить основную причину возникновения шума, а затем изменить схему таким образом, чтобы он уменьшился. В выходном файле вы найдете подробные данные относительно того, какой вклад вносят в полный шум резисторы и параметры транзистора (см. листинг). Например, из таблицы для частоты f = 100 кГц вы узнаете, что значительное влияние на возникновение шумов оказывает внутреннее сопротивление источника напряжения. И здесь у разработчиков есть немало возможностей для оптимизации.  [c.189]

Это способствует повышению КПД усилителя, которое можно физически объяснить преобразованием мощности высших гармоник в мощность основной частоты на нелинейной емкости коллекторного перехода. Верхняя же полуволна вследствие уменьшения емкости коллекторного перехода при возрастании напряжения на нем получается заостренной, что и приводит к увеличению П . Описанные явления называются параметрическими, так как являются следствием изменения параметров транзистора под действием усиливаемых колебаний. В данном случае происходит параметрическое преобразование мощности колебаний одной частоты (точнее, нескольких частот) в мощность колебаний другой частоты.  [c.133]

АФАР находят биполярные и полевые транзисторы. Основными параметрами СВЧ транзисторов, применяемых в выходных каскадах активных модулей передающей АФАР и определяющих в основном энергетические характеристики антенной решетки, являются выходная мощность, коэффициент усиления и КПД. На рис. 1.9 приведены зависимости выходной мощности от частоты современных мощных биполярных и полевых транзисторов 0.1, 27—29]. Мощные  [c.29]

Для обеспечения требуемой защиты элементов аппаратуры вместо диода может быть использован транзистор, переход эмиттер — коллектор которого включается в цепь питания аппаратуры. При прав ильно выбранных параметрах транзистора падение напряжения в его переходе эмиттер — коллектор может быть умень шено до 0,2 — 0,3 В, а в некоторых случаях оказывается даже воз можным совместить в транзисторе как основные его функции, так и функции защиты эл ементов цепей от напряжения обратной полярности. В обоих случаях обязательным условием является Применение транзисторов, у которых допустимое напряжение эмиттер — база не ниже напряжения источника питания аппа ратуры.  [c.26]


Основным объектом анализа является исследование нагрузок, которым подвергаются элементы схемы во время работы. Уравнения изменений нагрузок, выраженные через параметры элементов и решения матриц, вводятся в вычислительную машину и решаются ею. Максимальные значения каждой нагрузки (запоминаемые машиной и выводимые на печать после завершения программы вычислений, а также в каждом случае отказа в процессе анализа) анализируются после выполнения программы, чтобы определить, не будут ли перегружаться элементы во время работы при изменении различных параметров. Например, перегрузка транзистора может быть определена при анализе мощности рассеяния на его коллекторе (фиг. 1.17)  [c.47]

Коэффициент асимметрии у параметров работоспособности реле РЭС-6 лежит в диапазоне — 2,2 + 0,3. В большинстве сечений случайных процессов распределения имеют небольшую отрицательную асимметрию (в среднем 0,25). У резисторов кривые распределений скошены влево. Коэффициент асимметрии резисторов лежит в пределах 0,3—1,6. Параметры работоспособности транзисторов имеют в основном положительную асимметрию до 2,2—2,5.  [c.141]

И конденсатор С5 разряжается по цепи эмиттер—коллектор транзистора VT2 — резистор RIO. При этом транзистор У7 4 переходит в закрытое состояние, и пока конденсатор С5 не разрядится, остается закрытым, так как к его базе приложен отрицательный потенциал. Транзистор VT2 в этом случае открыт под действием силы тока, протекающего по цепи R9—R8. При открытом состоянии транзистора VT2 через измерительный прибор Р проходит импульс, длительность которого определяется параметрами разрядной цепи конденсатора С5 (в основном цепи Я10— G5). После разряда конденсатора С5 мультивибратор скачкообразно переходит в исходное устойчивое состояние до поступления нового запускающего импульса.  [c.174]

К генератору импульсов относятся транзистор ПШ, трансформатор Тр, конденсатор С2, диоды ДЗ—До и резистор Н2. На гене-ратор импульсов подается напряжение питания, пульсация которого сглаживается конденсатором С1, а ток во входной цепи ограничивается резистором Н1. Транзисторно-трансформаторный контур генератора импульсов одновременно выполняет функции стабилизатора напряжения, подаваемого на Я—С-цепочку и триггер. Этим практически исключается зависимость выдержки времени от изменения иапряжения питания. Основное звено — цепочка Н—С, параметрами которой определяется требуемая выдержка времени. В цепь этого звена входят конденсатор СЗ, резисторы ЯП—ИЗО, сопротивление которых изменяется двумя переключателями В1 п 32. Пороговым диодом и делителем напряжения Н3—Я5 создается опорное напряжение, устанавливаемое с помощью резистора Я5 на заводе-изготовителе.  [c.42]

Включение я выключение машин, регулирование и контроль различных параметров процесса сварки в контактных машинах осуществляются в основном с помощью электрических аппаратов и приборов. В последнее время в системах управления оборудования для контактной сварки широко применяются изделия электронной техники — транзисторы, бесконтактные логические элементы, кремниевые выпрямители, тиристоры, игнитроны.  [c.97]

Первые массовые автоматические регуляторы, построенные на базе электронных усилителей, так же как и первые цифровые и аналоговые вычислительные машины, появились после второй мировой войны. Это были громоздкие и капризные сооружения. Основным активным элементом в них была электронная лампа, вакуумный прибор, созданный еще на рубеже XX в. и ведущий свое начало от Эдисона. Правда, технология производства и качество их резко улучшились за 50 лет. Возросла и долговечность, но сам по себе принцип вакуумного прибора несет в себе возможность быстрого старения, а необходимость в подогреваемых цепях накала (нужно создавать электронную эмиссию катода) — склонность к катастрофическим, т. е. мгновенным и полным отказам. Первые транзисторы, разрабатывавшиеся главным образом на основе германия, по своим параметрам выглядели слабыми конкурентами электронным лампам — и усиление, и частотные характеристики, и неустойчивость к температурным и радиационным воздействиям казались многим разработчикам непреодолимыми препятствиями.  [c.78]

Подвижный ионный заряд N ) обусловлен в основном положительно заряженными ионами щелочных металлов Li , Na" и i и, возможно, протонами Н . В начале 1960-х годов, когда разрабатывалась МОП-технология, основная трудность изготовления МОП-транзисторов заключалась в том, что их параметры были нестабильными например, пороговое напряжение  [c.68]

Инвертор при мощностях свыше нескольких десятков вольт-ампер выполняют не по схеме автогенератора, а с независимым возбуждением (с усилителем мощности). В таком инверторе не наступает насыщение силового трансформатора, он мепее чувствителен к изменениям нагрузки, и при формировании сигнала управления специальной формы может стабилизировать выходное напряжение. Независимо от того,. по какой схеме выполнен силовой каскад, его режим работы определяется рядом основных соотношений. Сравнение различных силовых каскадов проведем по следующим параметрам загруженности транзистора относительно входного напряжения qu= использованию инвер-  [c.207]

Изменение температуры окружающей среды оказывает влияние на параметры элементов транзисторного стабилизатора. Изменяют свои параметры резисторы, конденсаторы, но основное влияние оказывают изменения параметров самих транзисторов и стабилитронов.  [c.271]

Широкополосные трансформаторы. Эти устройства, называемые сокращенно ШПТ, в последние годы стали одним из основных элементов схем транзисторны передатчиков, в особенности широкополосных. Современный транзисторный КВ радиопередатчик нередко содержит больше ШПТ, чем транзисторов. ШПТ выполняют в них функции согласования сопротивлений, симметрирования, сложения и разделения мощности, а также переворота (инверсии) фазы ВЧ напряжения. Они характеризуются следующими параметрами.  [c.145]


Рассмотрим основные параметры транзисторов, которые могут быть использованы в качестве управляющих элементов (см. прилож. 4).  [c.18]

Рассмотрим, какие возможности представляют стабилитрона по напряжению стабилизации и допустимому току. Данные основных параметров кремниевых стабилитротюв, выпускаемых в настоящее время, приведены в нрнлож. 2. Резистор Я следует выбирать таким, чтобы при минимальном напряжении /дом генератора ток через стабилитрон был не менее 0,1/ст.макс. По току стабилитрон должен быть выбран таким образом, чтобы максимальный допустимый ток стабилизации /ст.мапс был в 2—3 раза больше тока базы транзистора, который отпирается стабилитроном.  [c.15]

Транзисторы, предназначенные в основном для применения в силовых цепях, используют и в некоторых устройствах, где токи нагрузки не превыша ют десятых долей ампера, но где транзи сторы должны работать в активном режиме со значительным падением напряжения в цепи эмиттер — коллектор. В этом случае лимитирующим параметром транзистора становится величина Ртах - Такой режим, в частности, характерен для выходныхтран зисторов стабилизаторов напряжения, а также мощных эмиттер -ных повторителей.  [c.26]

С помощью коммутатора 36.3734 можно решить в основном все функциональные задачи по обеспечению необходимых выходных параметров системы зажигания, но он обладает невысоким уровнем надежности. Расширение числа функций обеспечивается в результате большего числа активных и пассивных изделий электронной техники, что при одинаковом уровне технологии, неизбежно приводит к снижению надежности. Решение задачи повышения надежности изделий, функционально подобных коммутатору 36.3634, заключается в применении новых технологических операций, изменяющих и конструктивное исполнение изделий. В коммутаторах БСЗ с регулируемым периодом накопления для реализации сложных функций управления применяются микросхемы К1401УД1 вместо транзисторов.  [c.235]

Основными недостатками моделей транзистора, полученных путем модификации модели Эберса—Молла, являются отсутствие непосредственной физической интерпретации таких параметров, как /до, faN, и синтез конфигурации эквивалентной схемы на основе эмпирического подхода. Следствием этих недостатков являются трудности определения формул связи ряда электрических и структурных параметров модели и неюзможность построения более точных многосекционных моделей путем развития двухсекционной модели Эберса—Молла.  [c.59]

Неизвестные функции этой системы — концентрация дырок и электронов р(х, у, z, t) и п х, у, z, t) и напряженность электрического поля Е(х, у, Z, t). Вместо Е может фигурировать электрический потенциал ф(д , у, z, t), так как Е=—gradf. Краевые условия состоят из начальных условий, характеризующих распределение зависимых переменных по объему кристалла в начальный момент времени, и граничных, задающих значения зависимых переменных на границах рассматриваемой полупроводниковой области. Геометрические размеры и конфигурация диффузионных областей и омических контактов транзистора также учитываются граничными условиями. Параметрами этой модели являются основные электрофизические параметры полупроводника. Дифференциальные уравнения в частных производных можно решать методами конечных разностей либо конечных элементов. С помощью физико-топологической модели можно с высокой степенью точности определить основные статические и динамические характеристики транзистора. Модель не учитывает влияния магнитного поля и возможных неоднородностей полупроводникового материала, что несущественно для моделирования реальных транзисторов, так как большее значение имеет точное определение параметров модели. Применение подобных моделей транзистора в задачах анализа электронных схем практически нереализуемо. Они применяются только для идентификации параметров более простых схемных моделей транзистора.  [c.132]

Модель программы ПА-1 получается в случае, если область базы представить одной секцией модели Линвилла и пренебречь дрейфовыми составляющими токов перехода. Для статического режима получим распределение токов в базе (рис. 6.2,а). Здесь /э, /б, /к — токи через выводы эмиттера, базы и коллектора. Электроны, инжектируемые эмиттером и коллектором в базу, частично рекомбинируются в ней, образуя рекомбинационные токи, а частично достигают противоположного перехода. Здесь / э, /пк — общий электронный ток соответственно через эмиттерный и коллекторный переходы. Рекомбинация происходит во всей области базы. Параметры и переменные усредняются в пределах секции, поэтому рекомбинационный ток представляется в виде двух сосредоточенных составляющих /рек.э и /рек.к. Ток ПереНОСа /г = / э—/рек.э. Дырочная составляющая эмиттерного диффузионного тока /рэ не создает переноса носителей между эмиттером и коллектором, так как для основных носителей в базе р-типа переходы создают не пропускающий дырки потенциальный барьер. Поэтому ток /рэ полностью входит в ток базы. Сумму рекомбинационного /рек.э и дырочного тока /рэ обозначим /эд. Аналогично, /кд — сумма рекомбинационного /рек.к и дырочного тока /рк коллекторного перехода в зоне базы. Задачу получения математической модели транзистора можно сформулировать следующим образом — необходимо связать токи /г, /эд, /кд с напряжениями (по отношению к базе) на эмит-терном 7эб и коллекторном [/кб переходах. Представив эти токи как зависимые источники, можно от распределения токов в базе перейти к исходному варианту эквивалентной схемы. Дополнив статическую схему емкостями эмиттерного Сэ и коллекторного Ск переходов, сопротивлениями утечки переходов Яуэ, Яук и объемными сопротивлениями тел базы Гб и коллектора Гк, получим полную эквивалентную схему транзистора (рис. 6.4).  [c.134]

Задачи анализа цифровых схем связаны с исследованием схем невысокой степени сложности (до 100 транзисторов)—цифровых микросхем малой степени интеграции, фраг.ментов БИС и др., и сложных схем БИС с учето.м распределенных параметров электрических цепей, связывающих фрагменты БИС между собой. Основным методом анализа в первом случае является численное решение системы (6.12) на заданном интервале времени при заданном наборе входных импульсов или уровней напряжения. Обычно используются неявные методы интегрирования невысокого порядка точности с переменным шагом. В ходе интегрирования рассчитываются выходные статические и дина.мические параметры — функционалы, характеризующие цифровые схемы уровни логической 1 и О , времена задержек и длительности фронтов выходных сигналов и т. п. Во втором случае необходима разработка специальных быстродействующих алгоритмов анализа БИС.  [c.146]

В этой главе мы попытались описать моделирование МОП-транзисторов с помощью численных методов. Были обсуждены физические основы и кратко рассмотрены все более усложняющиеся численные методы. Безусловно, только развитие основ физики полупроводников приведет к разработке моделей, пригодных для более надежного моделирования работы приборов, т. е. моделей, которые соответствовали бы достижениям технологии на современном уровне миниатюризации. Наиболее важная цель моделирования, а именно способность прогнозировать характеристики нового прибора на этапе проектирования, может быть достигнута только в том случае, если физические параметры в основных уравнениях будут проанализированы еще более тщательно. Возможно, для этого придется полностью пересмотреть некоторые общепринятые предположения и приближения и, по-видимому, это единственный способ освободиться от огромного количества подгоночных параметров и эвристических формул, которые все еще моделируют с той или иной точностью некоторые сложные физические явления. До разработки наиболее адекватной модели нужно провести очень тщательный анализ собственно физических процессов. Широкие возможности аппарата численного анализа в предсказании свойств приборов были продемонстрированы на примере программы моделирования МОП-транзистора -MINIMOS.  [c.446]


Концентрация примеси задается следующим образом каждому узлу конечно-элементной структуры сопоставляется плотность электрически активных ионов примеси. Это осуществляется либо заданием измеренных значений, либо использованием результатов расчета технологических процессов, либо описанием профиля распределения примеси с помощью ряда аналитических выражений. Включенная в препроцессор программа DOPING позволяет до выполнения основных расчетов по программе FIELDAY визуально проверить профили распределения примесей, чтобы убедиться в правильности задания параметров моделируемого прибора. Распределение концентрации примеси на дисплее можно изобразить с помощью линий уровня, графиков в некоторых сечениях, либо в виде трехмерной поверхности. На рис. 16.9 показан профиль распределения примеси в биполярном транзисторе в виде трехмерной поверхности.  [c.474]

Помехообразующими элементами являются входной выпрямитель yD7...yD (генерирует, в основном, симметричное напряжение помех с уровнем до 90 дБ резко снижающемся в диапазоне до 1МГц) конденсатор входного фильтра С1 (генерирует, в основном, симметричное напряжение помех из-за паразитных параметров R и L при прохождении через конденсатор переменной составляющей импульсов тока силовой цепи L способствует генерации помех на частотах мегагерцевого диапазона) диоды VD5 размагничивающей обмотки, VD8 — защитной цепочки, VD6 — выпрямительной и VD7 коммутационной выходной цепи (генерируют кондуктивные помехи в силовую и нагрузочную цепи) силовой трансформатор TV (генерирует помехи излучения, симметричные и несимметричные кондуктивные помехи в силовой и нагрузочной цепях) силовой транзистор VT1 (генерирует в основном несимметричные и симметричные помехи во входной и выходной через трансфор-  [c.326]

Уменьшение уровня гармоник в передатчике достигается снижением уровней сигналов, подаваемых и снимаемых с каскадов усиления, умножения и преобразования частоты. Поскольку все эти каскады являются генераторами гармоник, важно, чтобы в схемах каскадов не было цепей, резонирующих на ненужных гармониках и усиливающих их. Такие цепи образуются индуктивностями соединительных проводов и паразитными емкостями, в том числе емкостями электродов ламп и транзисторов. Во многих случаях паразитные резонансы можно обнару жить с помощью гетеродинного индикатора резонанса, который, кроме основной Частоты, индицирует побочные. Если частота резонанса совпадает с частотой мешающего колебания, необходимо устранить резонанс или, по крайней мере, изменить его частоту, изменяя параметры элементов, выбывающих его. Например, можно изменить длину проводов или заменить конденсаторы. Включение йнтипаразитных сопротивлений и контуров, помимо устрйТ1ения самовозбуждения, снижает и уроЬень гармоник.  [c.248]

Для реализации этого требования необходимо обеспечить рабо ту транзистора в режиме с минимальным падением напряжения в его переходе эмиттер — коллектор. Таким режимом является ре жим насыщения транзистора, поэтому при выборе типа транзи стора для коммутации токов в силовых цепях, в первую очередь, следует оценивать величину Пканас Следует, однако, иметь в виду, что в случае работы транзистора с высокой частотой комму тации тока, в особенности при растянутых фронтах его изменения, основным фактором, определяющим величину рассеиваемой мощ ности, являются потери энергии в периоды нарастания и уменьше -ния силы тока. Поэтому для данных условий работы транзистор а наиболее важным его параметром является величинаР.  [c.25]


Смотреть страницы где упоминается термин Основные параметры транзисторов : [c.621]    [c.152]    [c.87]    [c.156]    [c.6]    [c.134]    [c.26]   
Смотреть главы в:

Электроакустика и усилительные устройства Изд2  -> Основные параметры транзисторов



ПОИСК



123 — Основные параметры параметры

МОП-транзистор —

Основные параметры транзисторов, пригодных для управляющих элементов

Параметр основной



© 2025 Mash-xxl.info Реклама на сайте