Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругая деформация. Кручение

Предполагается, что ось жесткости лопасти совпадает с осью РШ. При этом угол установки лопасти имеет две составляющие угол поворота жесткой лопасти ро за счет упругости проводки управления и упругую деформацию кручения 0в, т. е. 0 = ро -f--f- Qe- Конструктивная крутка лопасти влияет только на установившиеся значения сил и потому может не учитываться. Обозначение для угла поворота жесткой лопасти выбрано в соответствии с обозначениями в разложении упругой деформации кручения Qe по собственным формам.  [c.381]


Положим упругую деформацию кручения лопасти у комля равной нулю, 0в(О) = О при этом угол установки у комля соответствует жесткой лопасти, т. е. 0(0) = ро. Дифференциальное  [c.383]

Для улучшения устойчивости вертолета может быть использована упругая деформация кручения лопасти под воздействием инерционных и аэродинамических шарнирных моментов при надлежащем смещении центра масс и центра давления сечения лопасти относительно центра жесткости. Смещение центра масс сечения вперед увеличивает демпфирование вертолета по тангажу. При вращении вертолета и несущего винта по тангажу с угловой скоростью 0в в сечении лопасти, перемещающемся со скоростью QR, действует кориолисова сила, направленная вниз на наступающей стороне и вверх — на отступающей. Эта сила, приложенная в центре масс лопасти, создает шарнирный момент. Реакция упругой на кручение лопасти при смещении центра масс вперед относительно центра жесткости соответствует изменению циклического шага с частотой оборотов, такому же, как и при отклонении продольного управления (0IS < О при 0в > 0), что означает увеличение продольного демпфирования.  [c.783]

В работе [М. 121] при анализе махового движения и качания жесткой лопасти была определена низкочастотная реакция лопасти на движение вертолета при смещении центра масс и центра давления от центра жесткости на величины Х] и Ха соответственно. Было установлено, что упругая деформация кручения лопасти создает обратную связь по угловым скоростям тангажа и крена, приблизительно пропорциональную ха — Xj). Для увеличения демпфирования центр масс должен быть впереди центра давления, Хл > Х/, что также благоприятно в отношении флаттера и устойчивости движения лопасти. Если ХаФ о, то угол установки лопасти зависит как от продольной, так и от поперечной скоростей вертолета хв и ув, что влияет и на устойчивость по скорости. При Ха = О обратная связь имеет вид  [c.784]

Диаграмма кручения (рис. 7.10), вычерченная самописцем испытательной установки, характеризует несущую способность втулочного соединения (диаметр вала а = 25 мм диаметр ступицы 1 = 30 мм длина втулки I = 20 мм чистота обработки поверхности вала и ступицы пятого класса). На этой диаграмме участки О А — поворот обоймы (ступицы) за счет упругой деформации кручения втулки АВ — проскальзывание соединения относительно вала (возрастание момента касательных сил трения) АС — переход начального трения в установившееся ОЕ — уменьшение мо-  [c.214]


Проволоки каната могут испытывать напряжения кручения, возникающие при свивке каната из прямолинейных проволок (упругие деформации кручения) изгиба, появляющиеся при сгибании канатом блоков и барабанов сжатия от давления соседних проволок растяжения под действием тягового усилия или массы поднимаемого груза.  [c.39]

Для цилиндрической проволочной винтовой пружины это уравнение может быть получено из равенства работы упругой деформации кручения проволоки и работы сжимающей силы Р, производимой при сжатии пружины на величину прогиба / (фиг. 384).  [c.394]

УПРУГАЯ ДЕФОРМАЦИЯ. КРУЧЕНИЕ  [c.75]

Сила Сила перемещение ж loi ни Упругая деформация. Кручение  [c.181]

Сила перемещение Сила Упругая деформация. Кручение 74  [c.185]

Это наблюдение позволяет сделать следующие выводы об основных свойствах деформации кручения в пределах упругих деформаций.  [c.187]

При кручении цилиндра в его поперечных сечениях возникают только касательные напряжения. Нормальные напряжения в поперечных и продольных сечениях пренебрежимо малы и могут быть приняты равными нулю. В пределах упругих деформаций высоту цилиндра, подвергнутого скручиванию, можно считать неизменной.  [c.188]

Произведение модуля упругости второго рода на полярный момент инерции GJp называют жесткостью при кручении. Эта величина, характеризует способность тела из данного материала с поперечным сечением данных размеров и формы сопротивляться деформации кручения. Таким образом, полный угол закручивания цилиндра прямо пропорционален крутящему моменту и длине цилиндра и обратно пропорционален жесткости при кручении.  [c.192]

По виду деформации материала, возникающей при работе упругого элемента, различают а) пружины с деформацией кручения б) пружины с деформацией изгиба в) пружины, материал которых подвергается сложным деформациям.  [c.460]

Когда стержень подвергается деформации кручения, в сечениях, ограничивающих выделенный элемент длиной ds, действуют крутящие моменты Мкр (рис. 360), являющиеся по отношению к элементу внешними. Моменты сил упругости равны по величине моментам Мкр и направлены в >  [c.367]

Пример 12.11. При решении задачи об упруго-пластическом кручении бруса с круглым поперечным сечением мы столкнулись с необходимостью иметь диаграмму сдвига материала в области пластических деформаций. Эху  [c.382]

Пример 139. К валу длиною I, один конец которого закреплен жестко, приложен на свободном конце крутящий момент, который заставляет вал испытывать деформацию кручения. Определить работу возникающих при этом сил упругости, если суммарный момент упругих сил пропорционален углу закручивания, причем коэффициент пропорциональности (коэффициент  [c.304]

Чему равна потенциальная энергия упругой деформации при кручении круглого вала  [c.54]

Общая формула для определения количества потенциальной энергии упругой деформации, накопленной в стержне при кручении, имеет вид  [c.77]

Потенциальная энергия упругой деформации при статическом кручении стержня  [c.406]

Когда стержень подвергается деформации кручения, в сечениях, ограничивающих выделенный элемент длиной ds, действуют крутящие моменты Мкр (рис. 364), являющиеся по отношению к элементу внешними. Моменты сил упругости равны по величине моментам Мкр и направлены в противоположные стороны. Взаимный угол поворота сечений тп и гп п  [c.389]

Ответ. Потенциальная энергия деформации состоит из энергии деформации изгиба в горизонтальной плоскости (У1), энергии деформации кручения (Уа) и энергии деформации упругих конце-  [c.168]

Для исследования деформации стержня в условиях упруго-пластического кручения необходимо располагать диаграммой сдвига материала, т. е. зависимостью угла сдвига у от напряжения т (рис. 376). Будем считать, что такая диаграмма у нас имеется. Она может быть получена путем испытания на кручение тонкостенных трубок. В дальнейшем мы покажем, что эта диаграмма может быть определена путем перестройки обычной диаграммы растяжения ст=/(е).  [c.365]


Пусть, например, имеет место последовательное соединение упругих элементов при растяжении-сжатии и при кручении (рис. 5.7, а и б). В каждом из этих случаев можно составить равенства величин потенциальной энергии упругих деформаций этих систем и эквивалентных им приведенных систем с одним единственным упругим звеном (связь) соответственно  [c.101]

Кручение стального образца в пределах упругих деформаций.  [c.128]

Согласно гипотезе кручения длина I и диаметр образца в пределах упругих деформаций остаются неизменными. Увеличение крутящего момента АМ и приращение угла закручивания Дф, соответствующие ступени нагружения, измеряются в процессе испытания. Используя данные опыта, по формуле (II, 37) можно определить модуль упругости.  [c.129]

Мерой сопротивления образца пластической деформации в таких испытаниях является крутящий момент мерой деформации образца— угол закручивания ф. Соответственно первичная диаграмма кручения фиксируется в координатах М,ф — ф, причем из-за отсутствия сужения образца на диаграмме нет ниспадающей ветви. Из диаграммы определяют условные пределы пропорциональности, упругости, текучести, прочности, а также истинный предел прочности. Особенность метода заключается в том, что указанные прочностные характеристики выражаются не через нормальные, а через касательные напряжения. В области упругой деформации  [c.36]

Коррозия и механические свойства. Растяжение за пределом упругих деформаций увеличивает скорость коррозии. Если напряжения в металле ниже определенного уровня, разрушения не наступает даже при значительной продолжительности испытаний в коррозионной среде. Здесь предполагается, что уменьшение поперечных размеров элемента вследствие коррозии невелико и его можно не принимать во внимание. При превышении же указанного уровня напряжений отрезок времени от нагружения до разрушения уменьшается с увеличением уровня напряжений. Этого в отсутствие коррозии не наблюдается. Имеет место явление так называемого внутрикристаллического и межкристаллического коррозионного растрескивания. В условиях определенных напряженных состояний (возникающих, например, при растяжении с кручением) и наличия коррозионно активной среды происходит охрупчивание материала.  [c.273]

Направление свивки троса выбирают с таким расчетом, чтобы трос при упругой деформации пружины скручивался, а не раскручивался. Пружины сжатия с правым подъемом витков делают из тросов левой свивки и наоборот. У пружин растяжения направление свивки и наклон витков должны совпадать. В пружинах кручения направление свивки безразлично.  [c.197]

По аналогии с другими статическими испытаниями при- кручении определяют условные пределы пропорциональности, упругости, текучести и прочности, а также истинный предел прочности. Однако все эти свойства выражают не через нормальные, а черёз касательные напряжения. В области упругой деформации кручением цилиндрического образца  [c.191]

При эксплуатации моментомер еоединяют, например, а маховиком и проверяемого механизма посредством сменной насадки 10 и 12. При вращении лонтролируемого механизма через рукоятку 8 происходит упругая деформация кручения в тонкой части стержня /. В результате рычаг 4 поворачивает стрелку индикатора (на рисунке не показана) через диск 9 на определенную величину, при этом читают показания на шкале и определяют величину момента.  [c.60]

Часть энергии вспышки затрачивается на работу упругого растяжения стенок цилиндра, шпилек крепления цилиндра и картера, на сообщение ускорения массе этих деталей (в пределах упругих деформаций). Другая часть энергии расходуется на деформацию сжатия поршня и шатуна изгиба поршневого пальца, изгиба и кручения коленчатого вала, вытеснение масляного слоя в зазорах между сопрягающимися деталями.- Значительная доля энергии тратится на сообщение ускорений поступательно-возвратно движущимся и вращающимся деталям. Большая часть этой энергии обратима и возвращается на последующих этапах цикла затраты же на работу вязкого сдвига, вытеснение маеляного слоя в зазорах, а также гистерезис при упругой деформации металла являются невозвратимыми.  [c.149]

Пример 10.11. При решении задачи об упруго-пластинеском кручении стержня с круглым поперечным сечением мы столкнулись с необходимостью иметь диаграмму сдвига материала в области пластических деформаций. Эту диаграмму можно получить либо из прямого испытания на кручение, либо же перестройкой диаграммы растяжения при помощи соотношений пластичности.  [c.377]

Уравнения движения шарнирного четырехзвенника с упругими звеньями. В механизме шарнирного четырехзвенника (рис, 52) считаем, что внешние силы приложены только к звеньям / и <3 и представлены парами сил с моментами 4Уд и Жз. Инерцией шатуна 2 пренебрегаем и, следовательно, реакции, действующие на него со стороны звеньев 1 и 3, направлены по линии ВС. В этом случае шатун испытывает только деформации растяжения — сжатия и его коэффициент ПОДЙТЛНйОеТН МбЖНб оН()ёдёЛить по формуле для цилиндрических стержней е2 = 12 Е.8, где /2— длина шатуна Е — модуль упругости 5 — площадь поперечного сечения шатуна. Коэффициент податливости вала звена 1 определяем, учитывая только деформации кручения е = 1 1 01 р ), где 1 — длина участка вала  [c.120]

Уравнения движения шарнирного четырехзвенника с упругими звеньями. В механизме шарнирного четырехзвенника (рис. 73, а) коэффициенты податливости 6i и 63 звеньев / и <3 можно определять по формуле (12.2), т. е. принимая во внимание только деформации кручения валов этих звеньев. Податливость шатуна 62 можно найти по формуле (12.3), считая, что он испытывает только деформации растяжения или сжатия. Внешние силы приложены только к звеньям 7 и < и представлены парами сил с моментами М и М . Шатун не нагружеи внешними силами, и, кроме того, считаем, что его массой можно пренебречь. Тогда величина деформации шатуна А/ найдется из услов гя  [c.247]


Модель деформирования материала 40. Описание деформируемости основывается на модели, предложенной в работе [21 ]. На примере углерод-углеродного материала 5ерсагЬ-40 установлено, что наряду с анизотропией его упругих свойств существенно проявление нелинейности в главных направлениях упругости. На начальном этапе нагружения — до предела текучести — поведение материала описывается линейной моделью, Позволяющей определить эффективные константы материала в соответствующих направлениях. Но уже при деформациях порядка 0,1 % поведение материала при сжатии в главном направлении упругости и кручении нелинейно и может быть описано типовой упруго-  [c.79]

Чистые металлы. Структура чистого Ni, подвергнутого ИПД кручением (5 оборотов при комнатной температуре, Р = = 7ГПа) [103], характеризовалась очень мелкими зернами равноосной формы со средним размером около 100 нм, содержащими высокую плотность решеточных дислокаций (рис. 3.1) (см. также п. 1.2.1). Сложный дифракционный контраст свидетельствовал о наличии внутренних упругих напряжений. Зерна имели преимущественно большеугловые границы, что подтверждается видом дифракционных картин, содержащих большое количество рефлексов, расположенных по окружностям. Эти данные находятся в согласии с результатами других структурных исследований Ni после интенсивной деформации кручением [23, 55].  [c.123]


Смотреть страницы где упоминается термин Упругая деформация. Кручение : [c.412]    [c.140]    [c.122]    [c.336]    [c.304]    [c.105]    [c.155]    [c.301]    [c.463]    [c.7]    [c.591]   
Смотреть главы в:

Физические эффекты в машиностроении  -> Упругая деформация. Кручение



ПОИСК



414 зависимость между кривизной степенью кручения и упругими моментами —, 36, 405 деформация

Деформации в пределах упругости при кручении

Деформация кручения

Деформация упругая

Кручение стального образца в пределах упругих деформаций

Кручение упругое

Силы упругости н закон Гука при деформации кручения

Упругая энергия деформации 17, 23, 43, 63, 117, 121,-аддитивна при некоторых условиях 43,---------------------анизотропных материалов 413,----------------------------------------изгиба в балках 60, 63, 220,-- — изотропных материалов 411,---------------------------------кручения 201,-пластинок

Энергия упругой деформации при сдвиге и кручении



© 2025 Mash-xxl.info Реклама на сайте