Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вырожденный электронный газ. Металл

Вырожденный электронный газ. Металл.  [c.27]

Здесь А — число электронов проводимости в единичном объеме металла Гр — температура вырождения электронного газа. По определению,  [c.331]

Цель третьей главы — Статистика электронов в полупроводниках и металлах — пояснить эффекты вырождения электронного газа и показать на примере легированных полупроводников определяющую роль концентрации свободных носителей заряда.  [c.3]


Если два состояния системы обладают одинаковой энергией, то их часто называют вырожденными. К сожалению, термин вырожденные может иметь два совершенно разных значения. Здесь оно использовано в том смысле, что электронная теплоемкость вырождается (деградирует) по сравнению с ее большим значением, вытекаемым из классических моделей. Ряд других свойств также вырождается в результате квантовых ограничений, поэтому говорят, что в металле имеется сильно вырожденный электронный газ . И в полупроводниках электронный газ может быть как вырожденным, так и невырожденным в зависимости от того, имеется ли достаточное число свободных электронов, чтобы стали существенными квантовые ограничения движения электронов.  [c.126]

У металлов вследствие вырождения электронного газа  [c.576]

У металлов электроны проводимости, образующие вырожденный электронный газ, подчиняющийся квантовой статистике Ферми-Дирака, занимая определенные энергетические уровни, достаточно свободны для перемещения при наложении на металл внешнего напряжения. Если напряженности поля достаточно для перевода большого числа валентных электронов на ранее свободные уровни, то создаются предпосылки для проявления электропроводности.  [c.68]

Распределение электронов в металле при абсолютном нуле. Металл для свободных электронов является потенциальной ямой выход из которой требует затраты работы по преодолению сил связи, удерживающих электрон в металле. На рис. 3.14 представлена схема такой ямы. Горизонтальными линиями показаны энергетические уровни, которые могут занимать электроны. В соответствии с принципом Паули на каждом таком уровне могут разместиться два электрона. Если электронный газ содержит N электронов, то последним будет занят уровень с номером N/2. Этот уровень называется уровнем Ферми для вырожденного электронного газа. Он  [c.120]

Процесс образования металлических структур из свободных атомов обычно рассматривают как результат взаимодействия газа из почти свободных валентных электронов с атомными остовами. Электронный газ стягивает положительно заряженные атомные остовы в ту или иную структуру. Образование предельно вырожденного электронного газа путем отрыва валентных электронов от свободных атомов требует больших энергий, равных сумме потенциалов ионизации. Энергии ионизации электронов возрастают от 4—5 эВ для щелочных металлов до 200—270 эВ для хрома, молибдена, вольфрама. Они в десятки раз превышают энергию испарения металлов (в 4,5—5 раз для щелочных металлов и в 10—65 раз для металлов II—VI групп). В связи с этим необходим энергетический анализ и сопоставление теплот испарения, плавления и превращения металлов с энергией образования электронного газа.  [c.48]


Выражения для а выводятся в теории явлений переноса. Наиболее общее выражение для термоэдс металлов (т. е. сильно вырожденного электронного газа)  [c.172]

В 8 с помощью кинетического уравнения Больцмана введены уравнения гидродинамики и в частности, в качестве первого приближения уравнения Навье— Стокса. Получены кинетические коэффициенты (теплопроводности и внутреннего трения), а также проведен расчет затухания акустических колебаний в нейтральной системе, возникающего в результате диссипативных потерь при прохождении в ней волны плотности. В 9 включены несколько задач, посвященных системам типа легкой компоненты, а также необходимые для общей постановки электронной теории оценки идеальности вырожденного электронного газа в реальных металлах вблизи поверхности Ферми и способности электронного газа экранировать ионные заряды. Последний 10 посвящен обсуждению проблем использования уравнений кинетического баланса (модельная система с равными вероятностями перехода, двухуровневая система и т. п.).  [c.359]

Решение. Так как температура вырождения электронного газа в металлах составляет 10 -10 К, то необходимо исходить из низкотемпературного приближения. Напомним некоторые формулы из равновесной статистической механики, относящиеся к этому вопросу. Обозначим  [c.382]

Определить электропроводность однородного металла при температуре Т, предполагая, что уравнение Больцмана для сильно вырожденного электронного газа имеет вид  [c.397]

У металлов вследствие вырождения электронного газа термо-ЭДС 8 равна п к Т еЕ1) (при Т> 0д), т. е. очень мала в полупроводниках, где электронный газ подчиняется классической статистике, 8 =  [c.175]

Парамагнетизм — следствие ориентации магн. моментов атомов и эл-нов проводимости в магн. поле. При высоких темп-рах парамагн. восприимчивость убывает обратно пропорц. темп-ре Кюри закон). Непереходные металлы составляют исключение. Их парамагн. восприимчивость аномально мала и слабо зависит от темп-ры, что связано с вырождением электронного газа. Наличие магн. моментов у атомов, ионов и эл-нов проводимости и связанное с этим расщепление электронных уровней энергии в магн. поле приводит к электронному парамагнитному резонансу (ЭПР). Структура магн. уровней очень чувствительна к тому, в каком окружении находится ч-ца. Поэтому ЭПР — важнейший источник сведений  [c.737]

Газ, число частиц в котором много больше, чем число состояний, доступных для каждой из них, называют вырожденным. В конце предыдущего параграфа мы видели, что такие условия характерны для электронного газа в металлах. В этом случае подсчет числа возможных микросостояний системы усложняется, потому что движение частиц перестает быть независимым. Для электронов, которые являются фермионами, это проявляется в том, что каждое возможное состояние частицы может быть занято не более, чем одним электроном. Два электрона уже не могут находиться в одном и том же состоянии.  [c.181]

Термо-эдс в полупроводниках по величине значительно больше (10 — Ю " В/град), чем в металлах (10 В/град). Поэтому величиной термо-эдс металла обычно пренебрегают и считают, что вся измеренная термо-эдс возникает в полупроводнике. Так как уровень Ферми в металле практически не меняется с температурой (электронный газ вырожден), то изменение контактной разности потенциалов с температурой между металлом и полупроводником (слагаемое дМк/дТ в (4.36)) будет определяться завиоимостью Ер = Г(Т) только в полупроводнике. Сказанное поясняет ярко выраженную зависимость дифференциальной термо-эдс полупроводника от величины уровня Ферми.  [c.141]

Как уже отмечалось, Лоренц применил свою модель бинарной смеси для описания движения электронов в металлах. При этом, вычисляя коэффициенты электро- и теплопроводности на основе полученного для этой модели кинетического уравнения (8.58), он использовал в качестве /о(у) максвелловское распределение (8.65). Оно было единственно разумным в 1905 г., но оно же в первую очередь явилось причиной непригодности модели Лоренца к электронному газу в металлах, так как электронный газ в металлах вплоть до 10 сильно вырожден.  [c.157]


Наблюдаемая теплоемкость металлов меньше теоретической и такова, как будто электронный газ не поглощает теплоту при нагреве металлического проводника. Эти противоречия удалось преодолеть, рассматривая некоторые положения с позиций квантовой механики. В отличие от классической электронной теории в квантовой механике принимается, что электронный газ в металлах при обычных температурах находится в состоянии вырождения, В этом состоянии энергия электронного газа почти не зависит от температуры, как это показано на рис. 7-1, т. е. тепловое движение почти не изменяет энергию электронов. Поэтому на нагрев электронного газа теплота не затрачивается, что и обнаруживается при измерении теплоемкости металлов. В состояние, аналогичное обычным газам, электронный газ приходит при температуре порядка тысяч кельвинов. Представляя металл как систему, в которой положительные ионы скрепляются посредством свободно движущихся электронов, легко понять природу всех основных свойств металлов пластичности, ковкости, хорошей теплопроводности и высокой электропроводности.  [c.190]

Таким образом, во всем диапазоне температур, в котором металлы могут существовать в твердом состоянии, электронный газ в них является вырожденным и его распределение мало отличается от распределения при абсолютном нуле. Происходит лишь незначительное смещение уровня Ферми влево, описываемое следующим соотношением  [c.122]

Сильно вырожденный электронный газ металл). При этом в первом приближении отрицательная производная функции распределения Ферми может быть заменена б-функцией б( — ). Тогда интеграл (61.3) будет равен значению подынтегральной функции в точке Е . Очевидно, при этом исчезают все коэффициенты с =1,2. о справедливо для полного теплового потока и всех добавок к электрическому току, вызываемых grad Т. Поэтому для термоэлектрических и термомагнитных кинетических коэффициентов должно быть использовано следующее приближение  [c.240]

Электроны в этом случае ведут себя как обычные классические частицы идеального газа. Таким образом, при условии ехрХ X [ (f— f)/( вТ )] 1 вырождение электронного газа полностью снимается. Снятие вырождения происходит при температуре 7 р = рМв = 5-10 К. Отсюда становится понятным, почему поведение электронного газа в металлах в отношении многих свойств резко отличается от свойств обычного молекулярного газа. Это обусловлено тем, что электронный газ остается вырожденным вплоть до температуры плавления и его распределение очень мало отличается от распределения Ферми — Дирака при О К.  [c.178]

В предыдущей главе при обсуждении вклада электронов проводимости в теплопроводность и теплоемкость металлов было установлено, что электронный газ в металлах является сильно вырожденным. Поскольку в этом случае концентрация электронов от температуры практически не зависит, температурная зависимость электропроводности металла o=e/ip, определяется зависимостьк> подвижности от Т. В области высоких. температур в металлах, так же как и в полупроводниках, доминирует рассеяние электронов на фононах. Выше было показано, что для вырожденного электронного газа подвижность, обусловленная рассеянием на фононах, обратно пропорциональна температуре (7.164).  [c.255]

Электропровсдность чистых металлов. Так как в металлах концентрация электронного газа п практически не зависит от температуры, то зависимость удельной электропроводности а от температуры полностью определяется температурной зависимостью подвижности и электронов вырожденного электронного газа. В достаточно чистом металле концентрация примесей невелика и подвижность вплоть до весьма низких температур определяется рассеянием электронов на колебаниях решетки.  [c.187]

Hi. ro термоядерного синтеэ ЭГМ — электронный газ в металлах ЭДП — апектронно-дыроч-. ная плазма в полупроводниках БК — вырожденный электронный газ в белых карликах И — плазма ионосферы СВ — плазма солнечного ветра СК — плазма солнечной кпроны С — плазма в центре Солнца МП — плазма в магнитосферах пульсаров.  [c.470]

Термоэлектрич. эффекты в П. важны и как средство определения параметров П. и для практик, приложений. Тер.чоэдс у П. значительно больше по величине, чем у металлов. Термоадс вырожденного электронного газа порядка Kje) - kTleg), причём у типичных металлов множитель kTi g очень мал Термоэдс невырожденных П. такого множителя не содержит, п потому она значительно больше. В связи с этим П. используются для создания термоэлементов. Для исследования П. важную роль играет измерение термоэлектрич, эффектов в магн. ноле.  [c.41]

Поскольку потенциалы ионизации валентных электронов в 10— 65 раз превышают энергии атомизации, то в металлах не происходит полного отрыва валентных электронов и образования предельно вырожденного электронного газа. Эти электроны коллектиеизиру-  [c.51]

Ш. — д. X. э. имеет чисто квантовую природу, он является следствием диамагнитного квантования энергетич. уровней электронов проводимости в постоянном магнитном поле (кваптова-н и е Л а к д а у) и того, что при Т р/к р-Ферми энергия, к-Болъцмана постоянная) электроны проводимости в металлах образуют вырожденный электронный газ (Ферми газ). Осцилляции сопротивлепия обусловлены тем, что при плавном изменении магнитного поля число энергетич. уровней ниже у розня Ферми и распределение электронов по состояниям меняются скачкообразно.  [c.426]

Сильное вырождение электронного газа имеет место в металлах даже при достаточно высоких температурах (в несколько тысяч кельвин), поскольку при типичной плотности электронов около см расчет по формуле (2.24) дает значение Ер(0) в несколько элеиронвольт (например, 5,5 эВ - для А 4,7 эВ - для У, в то время как, например, при Т = 5000 К. кТ > 0,4 эВ). Таким образом, для всех значений энергии вне области 2 + ЗкТ влево от Ер (см. рис. 2.7)  [c.49]


НОГО газа. Но существование металла в конденсированном состоянии при таких температурах невозможно. Из-за вырождения электронного газа выводы о его свойствах, полученные с помощью молекулярно-кинетической теории идеальных газов,— закон Ома для плотности тока ] (П1.2.4.7°) — находятся в резком противоречии с опытом. Для правильного описания электропроводности металлов применяются методы квантовой механики ).  [c.436]

Классификация видов плазмы ГР — плазма газового разряда МГД — плазма в магнитогидродинамич. генераторах ТЯП-М — плазма в термоядерных магн. ловушках ТЯП-Л — плазма в условиях лазерного термоядерного синтеза ЭГМ — электронный газ в металлах ЭДП — электронно-дырочная плазма ПП БК — вырожденный электронный газ в белых карликах И — плазма ионосферы СВ — плазма солн. ветра СК — плазма солн. короны С — плазма в центре Солнца МП — плазма в магнитосферах пульсаров.  [c.312]

Анодный сдвиг потенциала в поверхностном слое металла и пассивность последнего могут быть обусловлены активированной адсорбцией (хемосорбцией) пассивирующих частиц, в первую очередь пассивируюш,их анионов, в особенности однозарядного атомного иона кислорода 0 (анион радикала ОН, образуюш,егося из НаО или 0Н при анодной поляризации). Адсорбция ионов кислорода уменьшает свободную энергикэ поверхностных ионов металла за счет вытеснения эквивалентного количества свободных поверхностных электронов металла, т. е. создает пассива-ционный барьер. Поскольку поверхностный электронный газ вырожден, вытесняются электроны, находяш,иеся на самых высоких электронных уровнях, и при этом снижается поверхностный уровень Ферми металла. Изменение свободной энергии поверхности при полном ее покрытии адсорбированным монослоем составляет 3,8-10 эрг на один электрон, что соответствует 2,37 эВ, или 54,6 ккал/г-экв.  [c.311]

Значит, для обычных (близких к комнатным) температур Т< Тр. Иначе говоря, газ обобществленных электронов в металле сильно вырожден зависимость v(e) для него описывается кривой б на рис. 6.7. Это обстоятельство в сочета-  [c.143]

Сравним формулу (3.49) с величиной Скл=Зпко/2, ожидаемой для классического электронного газа. Квантовые ограничения привели к изменению электронной доли полной удельной теплоемкост1И. Отношение Се/С кл составляет я коТ/ЗЕ -. Этот результат часто формулируется в таком виде электронная теплоемкость в металле вырождена, т. е. она меньше ее классического значения в Ер/ЗкоТ раз. Электронный газ, для которого коТсЕ -, называют вырожденным.  [c.126]

Поскольку удельная электропроводность определяется выражением а = епр, а в металлах электронный газ полностью вырожден, то можно принять, что концентрация электронов проводимости п с изменением температуры остается постоянной. Но с ростом температуры подвижность р, уменьшается, что и обесЦечивает у бывание влектропроводностн или увеличение электросопротивления.  [c.132]

В случае электронного газа в металлах (m=9-10 2 г, пх 10 2 см ) 7 о 10 К и, следовательно, электронный газ в металлах практически всегда сильно вырожден в полупроводниках плотность электронов пяй10 см и Го Ю К, поэтому электронный газ в полупроводниках практически (т. е. при температурах порядка комнатных) не вырожден, и при определении его свойств можно пользоваться классической статистикой.  [c.233]

Природа металлического состояния. Мн. характерные свойства М. можно понять, считая, что электроны проводимости — идеальный вырожденный газ фермионов, а роль ионов сводится к созданию потенциальной ямы, в к-рой движутся электроны (модель Друде — Лоренца — Зоммерфельда см. Друде теория металлов, Зом-мерфелъда теория металлов). Темп-ра вырождения Тр электронного газа в этой модели определяется энергией Ферми  [c.115]

Величина и температурное поведение П. п. непосредственно связаны с видом ф-ции N ) вблизи энергии Ферми 10р, а переход П. п. к классич. парамагнетизму определяет вырождения температуру Tq — 0pfk. Напр., в жидком Не (см. Гелий жидкий), представляющем ферми-еистему ядер, такой переход наблюдается при Т X i К, тогда как для газа свободных электронов в металле он недостижим (Гд 10 К). В реальных металлич. системах со сложным многозонным дисперсии законом величину задают ближайшие к фермя-уровню края перекрывающихся зон и др. экстремальные значения энергии особые точки и тонкая структура ф-ции N(0). В случае 0р — 0р характерные для перехода в  [c.550]


Смотреть страницы где упоминается термин Вырожденный электронный газ. Металл : [c.120]    [c.16]    [c.539]    [c.279]    [c.120]    [c.171]    [c.40]    [c.112]    [c.92]    [c.255]    [c.76]    [c.213]    [c.478]   
Смотреть главы в:

Электронные свойства твердых тел  -> Вырожденный электронный газ. Металл



ПОИСК



Вырождение

Вырождение электронное

Вырожденный ферми-газ. Электронный газ в металле

Вырожденный электронный газ

Газ вырожденный

Электронный газ в металлах

Электроны в металле



© 2025 Mash-xxl.info Реклама на сайте