Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волны напряжений в плитах

Волны напряжений в плитах 229  [c.229]

Процесс распространения волн напряжений можно разделить на периоды. Первый период соответствует началу нагружения и распространению волн нагрузки и разгрузки по толщине плиты, проходящему аналогично распространению волн в полупространстве, занятом средой. Второй период соответствует началу отражения волны нагрузки от тыльной поверхности плиты,включает распространение отраженных волн напряжений в пределах толщины плиты, а также откольное явление на тыльной поверхности и взаимодействие волн напряжений внутри плиты. Третий период соответствует распространению волн напряжений вдоль плиты с некоторой конечной скоростью с до момента достижения фронтом волны боковой поверхности плиты. Четвертый период охватывает явление отражения волны напряжений от боковой поверхности и распространение отраженной волны к центру плиты и  [c.252]


Возможности формирования и измерения волн напряжений в композиционных материалах, в принципе, определяются уровнем техники экспериментальных исследований соответствующих явлений в твердых телах. Для образования волн напряжений используют пневматические пушки, заряды взрывчатого вещества, ударные плиты, ударные трубы и пьезоэлектрические ультразвуковые генераторы, а для их измерения — тензодатчики, пьезоэлектрические кристаллы, емкостные датчики, оптические интерферометры, методы голографии и фотоупругости. Экспериментальные исследования, не столь обширные как теоретические, тем не менее обеспечивают устойчивый поток информации, необходимой для проверки математических моделей. Результаты экспериментальных исследований скорости распространения волн, рассеяния  [c.302]

Волна расширения всегда отражается под углом, равным углу падения, так что она кажется исходящей из точки Р, которая представляет отражение точки Р относительно плоскости СО. Отраженный импульс расширения проходит через хвост падающего импульса сжатия, а результирующее напряжение в плите равно сумме напряжений, порождаемых падающим и отраженным импульсами. Распределение напряжений при нормальном падении импульса сжатия на свободную поверхность рассмотрено в гл. IV и показано схематически на фиг. 21. Форма импульса сжатия, получающегося от взрыва пироксилина, не обязательно такая, как показано на фиг. 21, хотя, в результате очень быстрой детонации и сравнительно медленного растекания продуктов детонации, импульс, повидимому, быстро возрастает и значительно медленнее ослабевает. Далее, вследствие  [c.170]

В третьей главе изложены результаты исследования напряженного состояния деформируемых тел при распространении волн напряжений. Дано решение задач о напряженном состоянии тонкого стержня при ударе, плиты при взрыве и ударе, сферы при взрыве и ударе о преграду.  [c.4]

При импульсивном нагружении в плите распространяются волны напряжений нагрузки, разгрузки и отраженные волны образуются области возмущений, в которых материал плиты находится в напряженном состоянии, которое характеризуется тензором напряжений (ст) частицы среды в движении (вектор скорости V), плотность материала р. Этим характеристикам состояния плиты в области возмущений соответствует тензор кинетических напряжений (Т), принимаемый в дальнейшем за основную искомую величину. Зная (Т) и пользуясь формулами, приведенными в 2 гл. 2, находим тензор напряжений (а), вектор скорости частиц V и плотность материала р в области возмущений.  [c.252]


При взрыве и ударе без внедрения в плите образуются только области возмущений, в которых распространяются волны напряжений, тогда как при ударе с внедрением в плите образуются область внедрения с пограничным слоем и области возмущений, в которых распространяются волны напряжений различной природы.  [c.252]

Таким образом, в зоне областей возмущений первых двух периодов процесса распространения волн напряжений тензор кинетических напряжений (Т) определен как основная характеристика состояния среды плиты. В этой зоне распространение волн напряжений проходит по толщине плиты от загруженной ее поверхности до тыльной и в обратном направлении. Размеры зоны определяются размерами области приложения нагрузки и толщиной плиты к, т. е. в направлении координатной линии г имеем (/ " р + к) от начала координат О.  [c.265]

При производстве опытов на ударное и взрывное воздействие надо иметь в виду взаимодействие между нагрузкой и материалом образца. Например, из теории главы VI ясно, что напряжение в продольной волне при продольном соударении стержней зависит не только от характеристик материала и от скорости ударяющего стержня, но и от материала ударяемого стержня. Аналогично давление на плиту от взрыва зависит не только от свойств и размеров заряда и от метода детонации, но и от материала плиты.  [c.333]

Упруго-пластические тела. Первые два раздела этого параграфа посвящены плоским волнам. Плоские волны делятся на два класса плоские волны напряжений и плоские волны деформаций. Первые возникают в стержнях и характеризуются трехмерным деформированным состоянием и одномерным (точнее, близким к одномерному) напряженным состоянием. Вторые возникают в плитах и характеризуются трехмерным напряженным состоянием и одномерным деформированным состоянием (см., например, Г. С. Шапиро, 1952).  [c.308]

Из уравнения (1У.22) видно, что развивающееся в процессе удара усилие Р, а следовательно, и максимальное давление на поверхности контакта падающего штампа (плиты или трамбовки) с грунтом может быть найдено, если знать время удара т и закономерность изменения контактного давления во времени. Напряженное состояние грунта на разных глубинах может быть определено по контактному давлению и закономерности затухания по глубине волны напряжения. Соответствующая началу удара скорость может быть определена по формуле  [c.240]

Жения, которые достаточно высоки, дЛя того чтобы вызвать откол тонких шайб, т. е. разрушение, параллельное их поверхности, под действием отраженной волны растяжения, порожденной отражением прямой волны сжатия от свободной поверхности шайбы. Полученные результаты правильны, если волна имеет ударный фронт, за которым следует монотонное убывание интенсивности напряжений. Продолжительность действия напряжений порядка 10 мкс, максимальное напряжение о = 7,5 10 дин/см , что в 5—6 раз превышает предел прочности материала. Измерение скоростей частиц на тыльной поверхности плиты можно проводить с помощью отпечатка (вдавливания) по схеме, приведенной на рис. 12. Пусть 5 — площадь контакта шайбы и плиты, Н — толщина шайбы, I — время, от-  [c.23]

При получении композиционных материалов на песчаном грунте листы часто имеют коробление и шероховатую поверхность. При деформировании композиционного листа на таком основании из-за значительного прогиба в материале появляются большие касательные напряжения вследствие относительного сдвига металла матрицы и волокна, обладающих разными пластичными характеристиками. Величина этих напряжений может превышать прочность связи волокна с матрицей, что иногда приводит к образованию непроваров, снижающих прочность композиции. Однако металлическая плита в качестве основания имеет и свои недостатки, так как в этом случае отраженная волна, интенсивность которой составляет более 20% интенсивности падающей ударной волны, создает на границах раздела между слоями матрицы значительные растягивающие напряжения. Это может приводить к образованию локальных дефектов, также снижающих прочность композиции. Более благоприятные условия сварки, обеспечивающие высокую прочность соединения, создаются при использовании в качестве основания плиты из материала, имеющего достаточно высокую жесткость в сочетании со сравнительно низким акустическим сопротивлением.  [c.161]


Если давление взрыва мгновенно возрастает, а затем быстро убывает, то волна сжатия (рис. 176, а), отражаясь от свободной поверхности в виде волны растяжения той же формы (рис. 176, б), накладывается на волну сжатия и на некотором расстоянии от свободной поверхности создает растягиваюш.ие напряжения. Если материал плиты выдерживает большие сжимаюш,ие напряжения и разрушается при гораздо меньших растягивающих напряжениях (что имеет место для многих материалов), то на некотором расстоянии S от тыльной (свободной) поверхности плиты растягивающее напряжение от наложения падающей и отраженной волн может достигнуть разрушающего значения и здесь образуется трещина откола.  [c.278]

Действительный механизм откола при взрыве или при ударе значительно сложнее, чем тот, который описывается одномерной теорией. Для толстых плит взрыв (и тем более удар) часто можно считать точечным. Фронтом волны сжатия является полусфера с центром в точке взрыва А (см. рис. 175). Вследствие отражения волны от верхней поверхности плиты возникают растягивающие напряжения, которые на некоторой глубине, налагаясь на волны сжатия, создают условия для лицевого откола. Отражение от нижней поверхности плиты приводит к тыльному отколу.  [c.279]

Для первого и второго периодов процесса распространения волн напряжений в плите построение тензора кинетических напряжений (Т) в областях возмущений волн нагрузки, разгрузки и отраженных волн подробно рассмотрено в 2 и 3 гл. 2 при условии линейной зависимости а = ЗКе. При больших давлениях зависимость а = о (е) сложнее, поэтому рассмотрим более общие определяющие уравнения, представленные уравнением состояния среды (материала плиты) е = е (сг) и де-виаторным соотношением  [c.253]

Рис. 2.50. Эпюры продольных напряжений в плите в среднем поперечном сеченпн модели (а), нормальных сил (б) и момент (в) в среднем ребре при нагружении одной i волны нагрузкой q = = 1200 Н/м2 Рис. 2.50. <a href="/info/206019">Эпюры продольных</a> напряжений в плите в среднем поперечном сеченпн модели (а), нормальных сил (б) и момент (в) в среднем ребре при нагружении одной i волны нагрузкой q = = 1200 Н/м2
Для измерения параметров волн напряжений, вызванных взрывом или ударом, при распространении их в металлах Райнхарт и Пирсон [37] предложили другую реализацию принципа Гопкинсона, сводящуюся к следующему. На поверхности массивной металлической плиты устанавливается цилиндрический заряд В. В., на ее противоположной (тыльной) поверхности помещается маленькая шайба из того же материала, что и плита, по одной линии с зарядом (рис. 12). Заряд В. В. подрывали и измеряли скорость шайбы. Такая процедура повторялась с шайбами различной толщины h. В результате были получены необходимые данные для построения кривой ст (t) в соответствии с приведенными зависимостями. Способ шайб дает хорошие результаты в том случае, если интенсивность волны невелика. При большой интенсивности волны напряжений шайба будет пластически деформироваться и может произойти откол. Представленная на рис. 12 схема не позволяет измерять скорость частиц (напряжение) точно в каком-либо месте внутри плиты, она определяет среднее напряжение в волне напряжений при падении ее на тыльную поверхность плиты, которое приближенно соответствует пространственному распределению напряжений внутри плиты. Различие невелико для волны, интенсивность которой затухает слабо, и значительно при быстром затухании, имеющем место в волне большой интенсивности. Отмеченные недостатки можно устранить или значительно уменьшить их влияние с помощью видоизмененного устройства, схема которого представлена на рис. 13. В плите с тыльной поверхности просверливается гнездо, в которое вкладывается несколько шайб, причем по отношению к распространению волны сжатия шайбы действуют так, как если бы они были частями плиты. Откол шайб можно исключить путем разумного подбора их толщин. Шайбы в гнезде необходимо поместить так, чтобы стык соседних шайб всегда находился в том месте, где ожидается разрушение. Такое устройство позволяет получить в результате одного испытания достаточно данных для построения полного распределения скоростей частиц. Оно позволяет также измерять напря-  [c.22]

Для других областей возмущений тензор кинетических напряжений строится аналогично изложенному. К моменту времени ifn = = [2 (/ — /) Р) Мс процесс распространения волн напряжений становится установившимся, плита совершает колебательное движение И находится в напряженном состоянии, которое характеризуется тен зором кинетических напряжений (Г). Построение этого тензора для заданной формы плиты приведено в [19]. Если плита изготовлена из вязкопластического материала, то все исследование напряженного состояния и движения частиц плиты в областях возмущений волн на-пряжений проводится аналогично изложенному, однако функции состояния материала имеют другой вид и определяются по следующим формулам в случае нагрузки  [c.275]

Распространение упругих однородных волн в стержнях было рассмотрено в элементарной постановке в 2.10 и 6.7. В 13.7, 13.8 были выявлены те ограничения, при которых элементарная теория применима (длинные волны) и в первом приближенни те поправки, которые нужно внести в результаты элементарной теории, относящейся к предполагаемой возможности распространения фронтов, несущих разрыв деформаций, напряжений и скоростей. Эти ограничения естественным образом снимаются, если рассматривать не волны в стержнях, а плоские волны в нолу-бесконечном теле, возникающие в том случае, когда к границе полубескопечного тела внезапно прикладывается нормальное давление или этой границе сообщается мгновенная скорость. Практически эксперименты подобного рода делаются на толстых плитах, заряд взрывчатого вещества укладывается на поверхности плиты и подрывается либо вторая плита бросается путем взрыва на первую так, что контакт возникает по всей поверхности одновременно. Создание действительно плоского фронта при этом довольно трудно, с одной стороны. С другой — измерения перемещений и скоростей возможны только на второй свободной поверхности плиты, от которой отражается приходящая ударная волна. Поэтому информация, извлекаемая из опытов подобного рода, довольно ограничена.  [c.565]


Разрушение отколом происходит, когда от поверхности детали самопроизвольно отделяется часть материала, в результате чего нормальная работоспособность элемента машины утрачивается. Например, бронеплита разрушается в результате откола, когда при ударе снаряда о наружную поверхность бронезащиты в плите возникают волны напряжений, приводящие к отколу с внутренней стороны части материала, которая сама становится смертоносным снарядом. Другим примером разрушения отколом может служить разрушение подшипников качения или зубьев шестерен вследствие описанного ранее явления поверхностной усталости.  [c.23]

Точность и качество отверстий повышают при наложении колебаний на пуансон (частота до 500 Гц, амплитуда 0,3 мм). Плиты толще 6,5 мм штамповке не подвергают. Отверстия с ровными краями и с низким уровнем дефектов вокруг них можно достичь при использовании гидродинамической пробивки (ГДП). Принципиальное ее отличие от пробивки отверстий в инструментальном штампе состоит в отсутствии сил трения между пуансоном и матрицей. Сущность ГДП при использовании схемы, в которой в пробивном пуансоне генерируются упругие волны напряжений и деформаций, состоит з следующем (рис. 5.9). Деталь 1 укладывают на стол 2, в котором размещена матрица 3, и фиксируют усилием Q, созданным стаканом 4. В матрице и стакане выполнены соосные отверстия, диаметры которых равны. В полости матрицы установлен пуансон 5 подпора. Пробивной пуансон 6 раз-  [c.136]

Аппроксимация решения по углу. Максимальные значения амплитуд волн напряжений, возникающих при нагружении коротким импульсом части тела, в первые моменты времени не испытывают влияния ненагруженных областей. Именно это позволяло в предыдущей главе ограничиваться при рассмотрении бесконечной плиты расчетом волн в конечных ее объемах. Интервал времени, в котором указанное влияние отсутствует, ограничен, однако именно в нем может происходить динамическое разрушение материала и сильное затухание волн в силу нелинейности уравнений движения и вязкопластических свойств среды. Последующие волновые процессы, на которые влияют ненагру-женные участки, часто не представляют интереса для расчета на прочность.  [c.225]

По виду уравнений (13.6.1) и (13.6.2) можно предположить, что величина 0 распространяется со скоростью i, величина (о со скоростью Сг. Но ЭТО Н6 0B 6M так, мы не можем поставить раздельные граничные условия для 0 и для иу, поэтому фактически уравнения оказываются связанными между собой. Однако эти соображения играют определенную наводящую роль при выборе структуры предполагаемых решений тех или иных задач. Сейчас мы рассмотрим следующую задачу. Бесконечная плита ограничена плоскостями Хг = h. Нужно выяснить вопрос о возможности распространения синусоидальных волн в направлении оси Xi. Предполагается, что перемещение Ыз = 0. Граничные плоскости X2 — h свободны от напряжений. Таким образом, нужно найти перемещения Ui xi, Хг, t) и Пг х , t). Положим  [c.445]

Эксперименты различаются по типу возбуждаемого импульса напряжений. При этом могут быть использованы монотонные импульсы сжатия в форме полуволны синусоиды о пологим участком нарастания напряжения, образуюш иеся в результате соударения с частицей, или импульсы с резким нарастанием напряжения, вызываемые воздействием взрывчатого вещества и ударных плит. Разложение Фурье для этих импульсов содержит значительную по величине составляющую с нулевой частотой. Ультразвуковые или синусоидальные импульсы характеризуются узким спектром, концентрирующимся в окрестности некоторой определенной частоты или длины волны. Волны этого типа идеальны для непосредственного определения соотношения дисперсии путем измерения групповых скоростей импульсов, в то время как при монотонном илшульсе дисперсия определяется косвенным образом по изменению формы импульса при его прохождении через материал.  [c.303]

Другой задачей, привлекшей к себе некоторое внимание, была задача о распространении продольных волн в бесконечной пластине. Если длина волны значительно больше толш ины пластины, то можно полагать, что в любом поперечном сечении плиты, перпендикуля рном направлению движения, напряжения распределены равномерно. В этом случае скорость распространения плоских продольных волн равна  [c.369]

В опытах, описанных выше, только импульс напряжения, отраженный от нижней поверхности плиты, имел достаточную для разрушения амплитуду, боковые же грани плиты были слишком удаленными от места взрыва, чтобы отраженные от них волны могли привести к разрушению образца. Однако в образцах меньших размеров волны, отраженные от боковых граней, производят разрушения кроме того, взаимно усиливающее влияние между волнами, отраженными от боковых граней и от нижней поверхности образца, может привести к дополнительным разрушениям, Шерман, Кристье и автор (Кольский и Шерман [75], 1<ольскиЙ и Кристье [74]) провели опыты с образцами из прозрачных материалов, чтобы наблюдать разрушения, происходящие вследствие интерференции между отраженными импульсами давления.  [c.172]


Смотреть страницы где упоминается термин Волны напряжений в плитах : [c.264]    [c.254]    [c.23]    [c.265]    [c.305]    [c.8]    [c.120]    [c.13]    [c.301]    [c.380]    [c.283]   
Смотреть главы в:

Волновые задачи теории пластичности  -> Волны напряжений в плитах



ПОИСК



Волны напряжений

Плита



© 2025 Mash-xxl.info Реклама на сайте