Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сцепление Схема

Рис. 43. Многодисковое сцепление (схема) и его привод Рис. 43. Многодисковое сцепление (схема) и его привод

Ведущие диски должны иметь силовую связь с маховиком в тангенциальном направлении и возможность перемещения в осевом направлении при включении и выключении сцепления. Схемы различных способов обеспечения связи ведущих дисков с маховиком приведены на рис. 5 [4,5].  [c.19]

Клапан ограничения давления (рис. 203) уменьшает возможность блокировки передних колес при служебных торможениях, сохраняя управляемость автомобиля, что особенно важно на дорогах с малыми коэффициентами сцепления. Схема включения клапана 17 ограничения давления в передний контур показана на рис. 196, в.  [c.256]

Фиг. 105. Пневматические приспособления для сборки крышки коробки передач (а) и муфты сцепления (схема б) автомобиля. Фиг. 105. <a href="/info/82087">Пневматические приспособления</a> для сборки <a href="/info/255152">крышки коробки</a> передач (а) и <a href="/info/106099">муфты сцепления</a> (схема б) автомобиля.
Механическая коробка передач с гидротрансформатором и обычным сцеплением. Схема трансмиссии показана на рис. 37, и. От двигателя вращение передается гидротрансформатору послед-  [c.102]

В табл. 148 приведены к и нема ти чес кие соотношения и размеры рычагов механизма привода сцеплений, схемы которых с обозначением размеров даны на фиг. 304. На основании приведенных размеров подсчитаны передаточные числа рычагов по формулам  [c.423]

В кинематических схемах важно показать более наглядно работу станка, указать порядок сцепления колес, последовательность в передаче движений, поэтому такие отклонения от действительного расположения колес и других элементов механизма вполне оправданы.  [c.305]

Механизмы для передвижения зубчатых колес или муфт сцепления конструируют по двум принципиальным схемам (рис. 16.1).  [c.246]

Следует отметить, что данный способ моделирования продвижения трещины, основанный на формуле (4.76), имеет ряд особенностей. Так, в случае, когда k = l (наиболее экономичный вариант с точки зрения времени расчета) силы сцепления уменьшаются до Е за время Атс = Ат. При этом положение вершины трещины изменяется скачком на величину AL, а СРТ V однозначно связана с шагом интегрирования Ат. Последнее обстоятельство накладывает существенное ограничение на выбор схемы интегрирования конечно-элементных уравнений движения приходится использовать безусловно устойчивые, но менее точные схемы интегрирования [см., например, уравнение  [c.247]


Рис. 2.8. Схематичное изображение муфты сцепления (а) и ее эквивалентная схема (б). Рис. 2.8. Схематичное изображение <a href="/info/106099">муфты сцепления</a> (а) и ее эквивалентная схема (б).
Клиновая форма ремня (рис. 18) обеспечивает лучшее сцепление его со шкивом. Это позволяет, по сравнению с плоскоременной передачей, снизить натяжение ремня и уменьшить усилия на валы и опоры, уменьшить при надобности угол обхвата, применять большие передаточные числа, меньшие межосевые расстояния и использовать передачу в приводах на несколько ведомых валов при сложных контурах. передач (см. табл. 1, схемы 10, 11, 13, 14)  [c.516]

В первом варианте (рис. 3.18) болт ставится с зазором и работает на растяжение. Затяжка болтового соединения силой Q создает силу трения, полностью уравновешивающую внешнюю силу F, приходящуюся на один болт, т. е. F=ifQ, где i—число плоскостей трения (для схемы на рис. 3.18, а г = 2) /—коэффициент сцепления. Для гарантии минимальную силу затяжки, вычисленную из последней формулы, увеличивают, умножая ее на коэффициент запаса сцепления =1,3... 1,5, тогда  [c.47]

Задача 1.56. На рисунке показан элемент одной из возможных схем гидроусилителя сцепления автомобиля (трактора). Масло под давлением ро = 0,5 МПа подводится внутрь вала и затем через отверстие — в полость между двумя  [c.26]

Рассмотрим схемы замещения 6-4, бив применительно к индуктору с магнитопроводом. Из рис. 6-5 видно, что путь обратного замыкания рабочего магнитного потока Ф 2, сцепленного как с нагреваемым объектом, так и с индуктирующим проводом, проходит через воздушные зазоры /г и через магнитопровод, в то время как путь обратного замыкания потока рассеяния пролегает только через магнитопровод, где эти потоки и объединяются. Так как магнитным сопротивлением магнитопровода можно пренебречь  [c.89]

Химическая стойкость полимерных материалов зависит от строения полимеров. Молекулы большинства полимеров имеют линейное строение. Отдельные линейные цепи дополнительно соединены главными связями, при этом они становятся менее подвижными. С ростом числа поперечных связей полимеры теряют ряд характеристик, присущих линейным полимерам, — эластичность, вязкость и т. д. Такие полимеры в большинстве случаев не растворимы и не плавятся. Процессы сшивки молекул происходят за счет разрывов двойных связей. Сила сцепления между отдельными линейными молекулами может быть увеличена, если между ними создавать химическое взаимодействие. Поэтому появляется необходимость создания поперечных химических связей между отдельными цепями высокомолекулярных соединений, т. е. необходимость создания молекул трехмерного строения. На рис. 9 показана схема строения высокомолекулярного вещества.  [c.59]

Муфты фрикционные сцепные. В отличие от кулачковых обеспечивают плавное сцепление валов под нагрузкой на ходу при любой разности окружных скоростей. Все фрикционные муфты в зависимости от формы поверхности трения делятся на дисковые, конусные и цилиндрические. Наибольшее распространение имеют дисковые муфты (плоская поверхность трения). На рис. 17.14 показана схема простейшей дисковой муфты с одной парой поверхностей трения. Полумуфта I укреплена на валу неподвижно, а полумуфта 3 подвижна в осевом направлении. Между полумуфтами размещена фрикционная накладка 2. Для сцепления валов к подвижной полумуфте прикладывают силу нажатия F. Передача вращающего момента осуществляется силами трения между трущимися поверхностями деталей муфты. В процессе включения муфта пробуксовывает (поверхности трения муфты проскальзывают) и разгон ведомого вала происходит плавно, без удара. При установившемся движении пробуксовка отсутствует, муфта замыкается и оба вала вращаются с одинаковой частотой вращения. Фрикционная муфта регулируется на передачу максимального момента, безопасного для прочности деталей машины, т. е. муфта ограничивает  [c.347]


Рис. 3.106. Схемы передач с фрикционным сцеплением. Рис. 3.106. <a href="/info/11570">Схемы передач</a> с фрикционным сцеплением.
Рис. 2. Схема испытания образцов на прочность сцепления покрытия с подложкой. Рис. 2. <a href="/info/443676">Схема испытания</a> образцов на <a href="/info/271162">прочность сцепления покрытия</a> с подложкой.
Критическая длина волокна (наименьшая длина, при которой волокно может действовать в композите), а также касательное напряжение на поверхности раздела волокна и пластической матрицы, характеризующее прочность связи волокна и матрицы, могут быть оценены по методике выдергивания одиночного волокна из материала матрицы. На рис, 68 показан образец, состоящий из диска матричного материала, в торец которого запрессовано одиночное волокно. Подрезая торец образца, можно создавать зоны сцепления волокна и матрицы различной длины h. Принципиальная схема испытательной установки показана на рис. 69.  [c.160]

Сложность анализа волновой картины в композитных материалах, в отличие от гомогенных, заключается в том, что на границе сцепления слоев при прохождении ударных волн появляются отражения, обусловленные различной динамической жесткостью pD материалов, из которых состоит исследуемый образец [121] (р — плотность, D — скорость распространения ударной волны). В связи с этим возникает вопрос о выборе схемы нагружения, удобной для анализа и расчета. С этой целью были проведены испытания на прочность сцепления при импульсных нагрузках слоев биметаллических материалов.  [c.225]

Согласно схеме (см. рис. 1), уравнение движения системы в период включения фрикционной муфты сцепления запишется  [c.117]

Потенциально неблагоприятными с точки зрения возможных критических или окопокритических по характеру эффекта Зом-мерфельда явлений в пусковых резонансных зонах являются машинные агрегаты транспортных машин с ДВС достаточно широкого класса. Агрегатам этого класса машин свойственны компоновочная база значительной длины между двигателем и рабочей машиной (исполнительным механизмом) и большая по сравнению с ДВС величина суммарного момента инерции вращающихся масс последней [22, 28, 109]. Такого рода конструктивно-компоновочные особенности встречаются в судовых и стационарных энергетических установках, в установках различного рода с гидродинамическими передачами, в машинных агрегатах тяжелых транспортных машин с отнесенной от двигателя главной функциональной муфтой сцепления. Схема длинпобазного машинного агрегата с ДВС рассматриваемого типа показана на рис. 91, а.  [c.302]

Рис. 310. Схемы станков для динамической балансировки а — простейшего 6 — более совершенного в — в сборе с махоаикои и сцеплением Рис. 310. <a href="/info/442402">Схемы станков</a> для <a href="/info/4812">динамической балансировки</a> а — простейшего 6 — более совершенного в — в сборе с махоаикои и сцеплением
Технологические схемы составляют отдельно для общей сборки изделия и для сборки каждого из ею узлов (по,цузлов) [4]. Рассмотрим принцип составления технологических схем на примере сборки узла муфты сцепления (рис. 13.4). Технологическая схема сборки дапногс узла показана на рис. 13.5, а, а технологические схемы сборки нодузлов........ иа рис. 13.5, б и в. Цифрами  [c.195]

Рис. 13.5. Технологическая схема сборки муфты сцепления в — ys муфты б. — подузлы нуфты Рис. 13.5. <a href="/info/65737">Технологическая схема сборки</a> <a href="/info/106099">муфты сцепления</a> в — ys муфты б. — подузлы нуфты
На рис. 7.72 изображена схема части механизма коробки передач, позволяющего изменять скорость вращения вала 8 (на рисунке он показан условно), на котором закреплены зубчатые катеса 6 и 7 разных диаметров. Шкив / приводит во вращение вал 2 вместе с кареткой А (изображенной на рисунке в нейтральном положении). Перемещая с помощью соответствующего устройства (на рисунке не показано) каретку влево, зубчатое колесо 4 войдет в сцепление с зубчатым колесом 6 и приведет во вращение вал 8, число оборотов 2 (считая, что диаметр колеса 6  [c.194]

Пример модели муфты сцепления автомобиля. Примером, когда ветвь типа R включается между двумя небазовыми узлами, может служить эквивалентная схема муфты сценления автомобиля, составленная для вращательного движения (рис. 2.8,6). На рис. 2.8, а схематично изображена муфта сцепления. На рис. 2.8 Ml —момент на входном валу Л г —нагрузка на выходном валу муфты Ri и Ri — коэффициенты трения в подшипниках Li и Z.2 — крутильные гибкости валов Ji и /з — моменты инерции ведущего и ведомого дисков муфты R = R(t) — а коэффициент трения между дисками сцепления.  [c.81]


Прямые методы. На рис. 7-1 приведена схема широко применяемого метода измерения сдвиговой прочности сцепления [139]. Испытания проводятся следующим образом после нанесения покрытия на нагрйтый образец удаляют стопорные винты и измеряют предел прочности на сдвиг на прессе, оборудованном соответствующим устройством для приложения нагрузки.  [c.171]

При травлении пластмасс типа АБС характер поверхности внешне не измемдется но образовавшиеся по всей поверхности микроуглубления обеспечивают высокую прочность сцепления металлического слоя вследствие заполнения этих углублений частицами химически осаждаемого металла По такой же схеме происходит травление сополимеров стирола типа СНП МСН НСМ Другие же типы пластмасс при травлении подвергаются поверхностному разрушению что создает необходимую шеро ховатость  [c.36]

Ременные передачи представляют собой устройства, предназначенные для передачи и преобразования вращательного движения между различным образом ориентированными в пространстве (преимущественно параллельными) валами, действие которых основано на эффекте сцепления гибких органов — ремней — со шкивами, рабочие поверхности которых являются поверхностями вращения. Принципиальная схема простейшей передачи представлена на рис. 20.1, а. Любой из шкивов 1 или 2, огибаемых ремнем 3, может быть ведущим или ведомым. В зависимости от формы поперечного сечения ремня различают передачи плоскоременные (рис. 20.1, б), клиноременные (рис. 20.1, в) и круглоременные (рис. 20.1, г).  [c.356]

А — зависимость прочности сцепления (0—50 мк) от относительного размера сопел а — сопло №1,6 — сопло № 2 Б — схема устройства сопел № 1 и 2 Б — влияние размера частиц ЛУгС— УС на прочность сцепления (сопло № 2) Г — форма частиц i — УС <50 -73 мк) до напыления 2 — (73- -100 мк)- -Со (0ч 20 мк) до напыления 3 — ЛУгС—(73- -100 мк)+Со (0-+-20 мк) после  [c.224]

Для изготовления подложек наиболее перспективны стали, титан, алюминий. Последний требует разработки паст с температурой вжигания не выше 550 °С. Аустенитные стали имеют недостаточную теплопроводность. Низколегированные малоуглеродистые стали нуждаются в защите от коррозии и окисления непокрытых участков подложки при обжиге покрытия и вжигаиии элементов гибридных интегральных схем (ГИС). Лучшие результаты по окалиностойкости и прочности сцепления с диэлектрическим покрытием дают диффузионное алитирование и хромалитирование. Кроме придания необходимых поверхностных свойств, диффузионный слой влияет на некоторые объемные свойства. Так, у образцов стали 0.8кп толщиной 1 мм при двухстороннем алитировании на глубину 0.1 мм КТР в интервале 50—400 °С возрастает с 13.2-10 до 13.8-10 K , при глубине  [c.140]

Таким образом, проведенное исследование позволило изучить влияние состава и условий напыления на структуру, прочность сцепления и теплопроводиость покрытий из порошка алюминированного циркона и установить оптимальное содержание металлической фазы в композите. Высокие теплоизоляционные свойства и достаточно большая прочность сл,еплекия покрытий типа ZrSi04—Al позволяет рекомендовать их для создания более эффективных теплозащитных покрытий, в частности при разработке новых схем теплозащиты деталей камеры сгорания дизелей.  [c.160]

Дэниел [16] сообщает о микрофотоупругих экспериментах, в которых выяснялось, как влияют на концентрацию напряжений в матрице ориентация волокон, нарушение сцепления волокна с матрицей и растрескивание матрицы на граничной поверхности. Схема установки, которая применялась для изготовления образцов, показана на рис. 17. Образцы отливались между двумя стеклянными пластинами, покрытыми слоем майлара. В качестве распорок использовались стальные проволочки диаметром 0,015 дюйма. Для центровки концы волокон бора соединялись с распорками (на рисунке не показано)  [c.523]

Рис. 14. Схема образца для определения нрочности сцепления матрицы с волокнами и экспери менталь1ные результаты [37]. Рис. 14. Схема образца для определения нрочности сцепления матрицы с волокнами и экспери менталь1ные результаты [37].
Исследуемые образцы нагружали со скоростью плоским ударом алюминиевого бойка, выполненного в виде стакана диаметром 90 мм, который разгонялся на ппевмо-пороховой установке ПК-90. При этом возможны два варианта схемы нагружения. В первом варианте удар бойком производится по жесткому (т. е. с большей динамической жесткостью) слою испытываемого образца. Диаграммы взаимодействия волн в этом случае приведены на рис. 115, где х — координата t — время сГг — напряжение, нормальное к фронту волны и — массовая скорость. Точкам на диаграмме (сГг, и) соответствуют области в плоскости t, х). Как видно, при такой схеме нагружения появлению растягивающих напряжений сТг<0 в плоскости сцепления слоев (точка 6) предшествует более раннее растяжение жесткой составляющей А (точка 4) при взаимодействии волны разгрузки, идущей от тыльной поверхности бойка после выхода на нее ударной волны, с встречной волной разгрузки, которая появилась при распаде разрыва на границе с мягким материалом  [c.225]

Для исследования влияния боковой разгрузки на измерения был поставлен специальный опыт, заключающийся в обеспечении более раннего прихода к датчику боковой разгрузки по сравнению с разгрузкой от тыльной поверхности ударника. Как показал эксперимент, датчик регистрирует спад давления в ударной волне на 5% от максимума для образца толщиной 20 мм ио истечении примерно 7 мкс после прихода фронта ударной волны. Таким образом, в течение этого времени при данных схеме эксперимента и размерах образца и ударника деформирование за фронтом ударной волны можно считать одномерным. Максимум откольного импульса регистрировался для образцов толщиной 20 мм не позже 6 мкс за фронтом ударной волны и, следовательно, влиянием боковой разгрузки можно пренебречь. Для сравнения на испытательной машине ИНСТРОН была исследована прочность сцепления слоев под действием статических растягивающих напряжений.  [c.227]

На рис. 1 показана схема электромеханического автоостанова. В режиме торможения под действием электромагнитных сил якорь 5 перемещается по главному валу 1 машины, преодолевая сопротивление движению от пружины 3. Усилие, развиваемое пружиной, регулируется винтом 4. При соприкосновении якоря с электромагнитом происходит проскальзывание и уменьшение скорости вращения вала. Полное сцепление их приведет к торможению главного вала машины.  [c.65]


Смотреть страницы где упоминается термин Сцепление Схема : [c.555]    [c.189]    [c.216]    [c.299]    [c.195]    [c.24]    [c.225]    [c.69]    [c.31]    [c.47]   
Полимеры в узлах трения машин и приборов (1980) -- [ c.128 ]



ПОИСК



Сцепление



© 2025 Mash-xxl.info Реклама на сайте