Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Примеры решения задач (системы с одной степенью свободы)

Примеры решения задач (системы с одной степенью свободы)  [c.537]

В гл. 1 обсуждаются основы теории колебаний и виды демпфирования. В гл. 2 и 3 вводятся основные понятия о том, как описывается явление демпфирования, причем особое внимание уделяется вязкоупругому демпфированию, определяющему поведение полимерных и стекловидных материалов, а также эластомеров. В гл. 4 описывается влияние вязкоупругого демпфирования на динамическое поведение конструкций, причем основной упор сделан на описании важного для практики случая системы с одной степенью свободы. В гл. 5 рассматривается тот же вопрос применительно к исследованию влияния дискретных демпфирующих устройств типа настроенных демпферов на динамическое поведение конструкции. В гл. 6 описано влияние обширного класса демпфирующих устройств типа систем с поверхностными покрытиями или слоистой структурой, в гл. 7 приведены диаграммы для определения комплексных модулей упругости для большого числа интересных с точки зрения конструктора материалов. В каждую главу включены иллюстрации, примеры и случаи из практики, с тем чтобы показать читателю, как можно использовать теорию и справочные данные при решении практических задач подавления колебаний и шумов.  [c.9]


Временные методы [2, 3, 6, 15) основаны на припасовывании (сшивании) решений дифференциальных уравнений на безударных участках движения, исходя из условия удара. При этом математическая модель ВУС имеет вид, подобный (6.5.34). Рассмотрим, для примера, задачу Коши для системы с одной степенью свободы  [c.383]

Излагаются основы общей теории колебаний. Ее приложения к решению технических задач иллюстрированы различными примерами, взятыми из практики наблюдения над колебаниями машин и сооружений в эксплуатации. Первая глава посвящена колебаниям систем с одной степенью свободы. Во второй главе рассматриваются системы с нелинейными и переменными упругими характеристиками. Третья глава посвящена системам с двумя степенями свободы, а четвертая—системам с несколькими степенями свободы. В пятой рассматриваются колебания упругих тел, в частности колебания мостов, судовых корпусов, турбинных дисков и т. д.  [c.2]

Т. е. к подстановке в эти уравнения известных сил, действующих на материальные частицы системы, и выполнению определенных математических операций, дающих решение задачи. Однако даже с чисто теоретической точки зрения такое представление является чрезмерно упрощенным. Дело в том, что может оказаться необходимым учесть связи, ограничивающие движение системы. Один вид такой системы нам уже встретился — это было твердое тело. Связи, накладываемые на его движение, состоят в том, что расстояния между его точками должны оставаться неизменными. Легко привести и другие примеры систем со связями так, например, косточка на конторских счетах ограничена в своем движении проволокой, на которую она надета, и поэтому имеет одну степень свободы (если рассматривать только поступательное движение).  [c.22]

Итак, квантовомеханический пространственно-временной эволюционный подход позволил нам избавиться от устаревшей проблемы отбора решений и специальных правил обхода полюсов функций Грина. Сила этого подхода в том, что он приводит не к вычислению отклика среды на действие источника, а к решению начальной задачи (задачи Коши), для которой существуют теоремы о существовании и единственности решения. Фейнман в своем первоначальном подходе к построению диаграммной техники для функции Грина постулировал правила обхода ее полюсов. Эти правила оказались абсолютно правильными для задач квантовой теории поля, в которой рассматривается только рассеяние одной, двух (т.е. конечного числа) частиц друг на друге, а все бесконечное число степеней свободы утоплено в ненаблюдаемый в реальных переходах вакуум. Его роль проявляется только в виртуальных переходах и сводится к перенормировке параметров частиц (закона дисперсии, массы, заряда). При рассеянии частиц и волн в макроскопических системах такой подход оказывается недостаточным, поскольку при этом макроскопическое число частиц или волн оказывается в возбужденных ( над вакуумом ) состояниях. Использование правил отбора решений Фейнмана для таких задач в монографиях [41, 42] приводит к ошибочным результатам. В этом случае работают все четыре обхода двух полюсов, то есть четыре функции Грина, и необходимо использовать диаграммную технику Келдыша [39], полностью эквивалентную задаче Коши. Такая ситуация имеет место для любой классической задачи, связанной с нелинейным стохастическим дифференциальным уравнением. Эти задачи эквивалентны квантовым (хороший пример - теория турбулентности [43]). Только для линейных задач с параметрической случайностью , т.е. для линейных уравнений со случайными коэффициентами, из четырех функций Грина остаются две - запаздывающая С и д опережающая. Мы увидим, что энергия рассеянных волн выражается через их произведение. При этом (3 отвечает за эволюцию поля на нижней ветви контура Швингера-Келдыша, а 0 - за эволюцию на верхней ветви (см. рис. 2).  [c.67]


В п. 1.15 тема численных решений обсуждалась применительно к линейным системам с одной степенью свободы. Для определения динамических перемещений при отсутствии демпфирования в подобной системе и при действии на нее возмущающих сил, описываемых кусочно-постоянными и кусочно-линейными функциями, там приводятся выражения (1,76в), (1.76г), (1.77в) и (1.77г). Программа ONFOR E построена на использовании первых двух из этих выражений в алгоритме, вычисляющем динамические перемещения при действии кусочно-постоянной возмущающей силы. Текст этой программы приведен ниже вместе с результатами расчетов по ней для тестовой задачи, проведенных для отладки программы. Этот пример относится к системе с одной степенью свободы, жесткость пружины равна k = 0,18-10 Н/м, период собственных колебаний составляет х= 10 с. В качестве возмущающей силы прикладывается единичная ступенчатая функция, динамические перемещения вычисляются на пяти постоянных шагах по времени, равных Д/ = 1 с. В конце пятого шага по времени перемещение должно равняться 0,0508 м, а скорость должна принять значение О м/с. Проверка этих результатов показывает, что их точность равна машинной точности.  [c.455]

Вторая лекция. Первую половину лекции рекомендуется посвятить решению, в качестве примера, задачи № 837 из сборника И. В. Мещерского (изд. 1965 г.). В условии этой задачи не сделано оговорки о том, что коэффициент трения принимается постоянным, не зависящим от относительной скорости. Если учесть в этой задаче хотя бы незначительное изменение коэффициента трения в зависимости от относительной скорости скольжения, то получим типичный пример самовозбуждаюцдихся колебаний, физическую сторону которых легко описать с помощью баланса энергии. Целесообразно рассмотреть и некоторые другие примеры автоколебаний. Во всяком случае здесь вполне уместно дать определение автоколебаний, подчеркнув их особенности, и перейти к изложению вынужденных колебаний под действием сил, являющихся заданными функциями времени. Во второй части лекции следует дать решение дифференциального уравнения движения системы с одной степенью свободы под действием восстанавливающей и гармонической возмущающей сил. Полезно представить решение этого уравнения в виде суммы трех слагаемых, выражающих соответственно свободные колебания, свободные сопровождающие колебания и чисто вынужденные колебания.  [c.22]

Рассмотрим, как находятся условия равно(весия механической системы на таком примере равноплечные весы с длиной коромысла 21, массой коромысла т и центром тяжести, расположенным на расстоянии а ниже точки опоры весов, нагружены массами т, и (рис. 3). Точки подвеса грузов и опора весов считаются лежащими на одной прямой. Надо найти условия равновесия весов. В данном случае система имеет одну степень свободы — вращение вокруг точки опоры в одной плоскости и решением задачи будет равновесное аначение угла 0.  [c.104]

С целью обойти трудности, связанные с большой размерностью фазового пространства, А. Н. Колмогоров предложил в 1954 г. изучить один частный случай задачи трех тел, в котором соображения симметрии позволяют свести задачу к системе с двумя степенями свободы. Подробнее мы рассмотрим эту систему в одной из следующих частей, а сейчас ограничимся лишь упоминанием о результатах, которые удалось на этом пути получить. Во-первых, К.А.Ситников [29] в 1959 г. доказал для этого примера (а, следовательно, и для общей задачи трех тел) существование осциллирующих движений (0S). которые были введены Шази как чисто логическая возможность, которую приходится терпеть, коль скоро не удается ее отвергнуть. Строго говоря, рассуждения К. А. Ситникова относятся лишь к одностороннему поведению решений, но соображения симметрии позволяют показать существование решений типа 08 П 05+, что и отражено в табл. 2. А. Н. Колмогоров показал, что в основе рассуждений Ситникова лежит весьма простая геометрическая конструкция и высказал в связи с этим гипотезу о строении границы областей НЕ ,, упомянутую выше. Затем автору удалось показать, что в рассматриваемом примере применимы методы символической динамики это позволило доказать непустоту классов НЕ П В+, НЕ П 08+, В П 08 , 08 П В+. К сожалению, в все построенные примеры лежат на подмногообразии высокой коразмерности, что не позволяет судить о мере соответствующих подмножеств. Все же каждое из них содержит континуум (в смысле мощности) траекторий.  [c.51]


Мы только что акцентировали внимание на том, что каноническая теория возмущений для случая, когда степеней свободы больше, чем одна, ведет к расходящимся рядам. Иногда удобно для решения уравнений движения (мы приведем пример в следующем параграфе) использовать старые переменные wi и которые, конечно, остаются канонически сопряженными переменными и для возмущенной системы, поскольку они получаются из и С1к каноническими преобразованиями. Это особенно удобно, когда мы имеем дело с вырожденной системой. Простейший случай вырождения мы встретили в гл. 6, где некоторые v/ оказались просто одинаковыми. В задаче Кеплера оказалось даже, что Vj=V2=V3. В этом случае можно вместо величин J, определяемых соотношениями (6.224) — (6.226), использовать любую их линейную комбинацию и, в частности, умноженные на 2л величины а , и а , введенные нами в 6.1. Если обозначить умноженные на 2л величины а , и з через J , Ji и Уз", а канонически сопряженные переменные — через W , inii и w i , то мы придем к невозмущенной системе, для которой  [c.197]

Таким образом, рассмотренная система служит примером распределенной системы, движения которой полностью определяются решениями системы обыкновенных дифференциальных уравнений небольшой размерности. В какой мере этот частный вывод может быть распространен па другие распределенные системы Определенный и исчерпывающий ответ на этот вопрос в настоящее время дать трудно качественно (ио крайней мере в рамках квазилинейной теории) ситуация зависит от числа степеней неустойчивости и степеней свободы с малым затуханием. В рассмотренной задаче одна степень неустойчивости (один положительный показатель Ляпунова). Затухания по остальным степеням свободы быстро растут. Как будет показано в дальнейшем. именно с этим обстоятелт.ством связана возмол ность построения одномерной модели в виде точечного отображения прямой в прямую, адекватно передающего особенности временного  [c.36]

Исследование динамики любого механизма (устройства, машины, системы) начинается с составления его расчетной схемы (модели). Часто расчетную модель называют динамической моделью. При составлении динамической модели приходится абстрагироваться от некоторых особенностей устройства, которые в данном исследовании представляются несущественными. Любая динамическая модель, как правило, пригодна для решения данной, конкретно поставленной задачи и, чаще всёго, мало пригодна в других случаях. Характерным примером этой ситуации является отображение одной и той же механической системы динамическими моделями с разным числом степеней свободы. Целесообразность использования каждой из них определяется, например, шириной частотного спектра возмущающих воздействий.  [c.835]


Смотреть страницы где упоминается термин Примеры решения задач (системы с одной степенью свободы) : [c.535]    [c.141]    [c.133]   
Смотреть главы в:

Руководство к практическим занятиям по сопротивлению материалов Издание 3  -> Примеры решения задач (системы с одной степенью свободы)



ПОИСК



Еще один пример

Задачи и примеры

Об одном из решений

Примеры и решения

Примеры решения задач

Примеры систем

Примеры систем с одной степенью свободы

Решение системы

С одной степенью свободы

Система с одной степенью свободы

Системы с одной степенью свободы Системы с одной степенью свободы

Степени свободы системы

Степень свободы



© 2025 Mash-xxl.info Реклама на сайте