Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия запаса

Для предотвращения контактной коррозии или для уменьшения ее влияния в соединениях с натягом следует предусматривать определенный запас сцепления К, который принимают  [c.60]

ГО давления к рабочему, который по действующим НД составляет от 1,1 до 1,5. При определенных условиях эти значения коэффициента запаса прочности могут обеспечивать безопасность эксплуатации оборудования. Но, однако, действующие НД не дают ответа на главный вопрос в течение какого времени эксплуатации будет обеспечена работоспособность и при каких эксплуатационных условиях. Другими словами кроме величины пробного и рабочего давления в технических паспортах или сертификатах на нефтегазохимическое оборудование должны быть регламентированы значения расчетного ресурса (время или число циклов нагружения до наступления того или иного предельного состояния) с конкретизацией условий эксплуатации (температуры, скорости коррозии, параметров изменения режима силовых нагрузок и ДР)-  [c.329]


При конструировании необходимо выявить функциональные параметры, от которых главным образом зависят значения и допускаемый диапазон отклонений эксплуатационных показателей машины. Теоретически и экспериментально на макетах, моделях и опытных образцах следует установить возможные изменения функциональных параметров во времени (в результате износа, пластической деформации, термоциклических воздействий, изменения структуры и старения материала, коррозии и т. д.), найти связь и степень влияния этих параметров и их отклонений на эксплуатационные показатели нового изделия и в процессе его длительной эксплуатации. Зная эти связи и допуски на эксплуатационные показатели изделий, можно определить допускаемые отклонения функциональных параметров и рассчитать посадки для ответственных соединений. Применяют и другой метод используя установленные связи, определяют отклонения эксплуатационных показателей при выбранных допусках функциональных параметров. При расчете точности функциональных параметров необходимо создавать гарантированный запас работоспособности изделий, который обеспечит сохранение эксплуатационных показателей к концу срока их эксплуатации в заданных пределах. Необходимо также проводить оптимизацию допусков, устанавливая меньшие допуски для функциональных параметров, погрешности которых наиболее сильно влияют на эксплуатационные показатели изделий. Установление связей эксплуатационных показателей с функциональными параметрами и независимое изготовление деталей и составных частей по этим параметрам с точностью, определенной исходя из допускаемых отклонений эксплуатационных показателей изделий в конце срока их службы, — одно из главных условий обеспечения функциональной взаимозаменяемости.  [c.19]

Показатели долговечности (срок службы, ресурс) рассчитывают с помощью критерия разрушения установленной доли Р поверхности на предельно допустимую глубину к (величина прибавки на коррозию и другие запасы).  [c.133]

Нормативные коэффициенты запаса прочности устанавливаются нормами. Они зависят от класса конструкции (капитальная, временная и т. п.), намечаемого срока ее эксплуатации, вида нагрузки (статическая, циклическая и т. п), возможной неоднородности изготовления материалов (например, бетона), вида деформации (растяжение, сжатие, изгиб и т. д.) и других факторов. В ряде случаев приходится снижать коэффициент запаса в целях уменьшения массы конструкции, а иногда увеличивать коэффициент запаса — при необходимости учитывать износ трущихся частей машин, коррозию и загнивание материала.  [c.57]


Можно так>ке, не задаваясь величиной т, определять допускаемую длину трещины, исходя из докритического роста трещины Z — 1о (при этом коэффициент т определяется величиной 1с и). Запас на докритический рост необходим при длительном статическом нагружении, в агрессивных средах, при эффектах ползучести и замедленного разрушения, коррозии под напряжением, повторном циклическом нагружении и др. В этих случаях расчет на однократное нагружение должен дополняться расчетом на долговечность.  [c.293]

Кроме того, к найденной по расчету толщине стенки резервуара (Ьмм) следует добавить запас на коррозию в размере 1—2 мм.  [c.375]

Однако при продолжительной эксплуатации машины начинают проявляться медленно протекающие процессы, такие как износ, коррозия, коробление и др., которые приводят к уменьшению запаса надежности.  [c.157]

Для защиты от коррозии внутренней поверхности фильтров, баков и трубопроводов установок по химической обработке воды, а также баков запаса воды и конденсата при температуре до 40 °С применяют эпоксидную шпаклевку, перхлорвиниловый лак и жидкие каучуки (наириты). При температурах среды до 120°С используют эмаль марки ВЛ-515, до 140 °С — эмаль ВЛ-723 [9].  [c.61]

Для подземных строительных сооружений транспортного назначения после эксплуатации в течение 100 лет в грунтах класса I уменьшением толщины стенки тоже можно практически пренебречь. При работе в грунтах класса II уменьшение толщины стенки может быть компенсировано соответствующим ее увеличением (запасом на коррозию). В грунтах класса III приходится принимать в расчет повышенную опасность коррозии.  [c.142]

Системы катодной защиты от коррозии следует проектировать всегда с большим запасом. Затраты на завышенную мощность станции катодной защиты в сравнении со стоимостью всего объекта невелики к тому же и срок службы анодов (анодных заземлителей) увеличится, если имеющиеся резервы мощности не будут использоваться. Более мощная защитная установка дает возможность осуществлять предварительную поляризацию в случае объектов без покрытия. В случае поверхностей с покрытием запас мощности позволит компенсировать повреждения или старение защитного слоя. Далее описываются некоторые примеры катодной защиты сооружений, соприкасающихся с морской водой.  [c.345]

Для компенсации потерь металла от коррозии нередко требуется увеличивать толщину стенок (обеспечивать запас по толщине), что обусловливает ощутимый перерасход материала. Согласно DIN 2470, часть 2, толщину стенок трубопроводов можно не увеличивать, если обеспечена надежная защита от коррозии. Благодаря этому можно сэкономить значительные количества материала в случае трубопроводов это может соответствовать уменьщению толщины стенки максимально на 10 % В результате уменьшается не только стоимость сооружения, но и его масса, что упрощает прокладку трубопроводов и снижает затраты на транспортировку при больших расстояниях, например при перевозках морским транспортом.  [c.414]

Требуется найти допустимую начальную скорость коррозии насосно-компрессорных труб для газоконденсатной скважины (действующая норма амортизации = 15 лет) из стали с пределом текучести = 500 МН/м (50 кгс/мм ). Диаметр труб d = = 75 мм, толщина стенки h (0) = 5,5 мм. Избыточное давление газа Р = 20 МН/м (200 ат). Коэффициент запаса прочности, принимаемый при расчете насосно-компрессорных труб на осевую нагрузку относительно предела текучести, по справочным данным, равен 1,5. Окружное напряжение в стенке трубы а = = Pd/2h (0) = 136 МН/м" (13,6 кгс/мм )..  [c.41]

Данная величина намного меньше величины, принимаемой в литературе в качестве допустимой (0,25 мм в год), что указывает на заниженное значение коэффициента запаса прочности. Определим его, исходя из указанной допустимой скорости коррозии. По соответствующей величине То = v tlh (0) = 0,682 определяем на графике значение = 0,09. Следовательно, искомое значение расчетного коэффициента запаса прочности l/f = 11, т. е. = = 45 МПа. Полученный результат подтверждается практикой эксплуатации обрывы труб систематически происходят через один — два года и чаще, т. е. фактическая долговечность на порядок меньше, чем проектируемая.  [c.38]


По этому уравнению можно рассчитать глубину коррозии при любых значениях температуры и времени. При этом расчетные данные получены исходя из результатов лабораторных опытов продолжительностью до 10 ООО ч и промышленных испытаний (примерно половина данных), средняя продолжительность которых составляла (30—40)-10 ч, а в некоторых случаях достигала (70—100)- 10 ч. В табл. 13.2 указана только температура металла, так как температура дымовых газов при промышленных экспериментах не была постоянной в пылеугольных парогенераторах она составляла 700—1100, в газомазутных 720—1240 °С. Коэффициент избытка воздуха при сжигании топлива составлял 1,03—1,2, Расчет характеристик жаростойкости сталей осуществлен на ЭВМ с использованием параметрических диаграмм для обработки экспериментальных данных [1, 3]. Значения глубины коррозии, получаемые по данным табл. 13.2 и 13.3, включают коэффициент запаса 1,3, что соответствует обычной ширине полосы разброса экспериментальных точек.  [c.235]

В трубчатом воздухоподогревателе трубы разрушаются из-за коррозии на небольшой длине, однако заменять приходится их целиком. При повреждении труб увеличиваются перетечки воздуха в дымовые газы, возрастает нагрузка на дымосос н вентилятор, экономичность парогенератора снижается. Если нет достаточного запаса  [c.91]

Углекислота имеет низкую степень диссоциации при температуре 20° С только 0,2% ее молекул дают начало водородным ионам. Однако при их израсходовании на протекание коррозионного процесса концентрация водородных ионов восполняется за счет запаса углекислоты. В связи с этим процесс углекислотной коррозии не затухает,  [c.189]

При расчете реактора следует предусмотреть меры, чтобы температура в центре таблетки на UO2 не приближалась к температуре плавления. Обычно для этого уменьшают диаметр тепловыделяющих элементов, чтобы иметь значительный запас по температуре (хотя в экспериментах появление в центре тепловыделяющих элементов жидкой фазы не приводило к разрушению их). Толщина оболочки обычно ограничена сопротивлением ползучести материала и его коррозионной стойкостью. Однако в реакторе BWR, который работает при относительно невысоком давлении теплоносителя, необходимость в ограничении ползучести отсутствует, так как давление, создаваемое газообразными продуктами деления, приводит к необходимости увеличить толщину оболочки минимум до 1 0,06 см. Оболочка такой толщины недостаточно упруга и может разрушиться при образовании складок. Другим параметром, который ограничивает толщину оболочки, является способность удержать водород, который оболочка адсорбирует в процессе коррозии. Максимально возможное содержание водорода в оболочке не должно превышать 3,6-10 2%)-  [c.112]

Ванты обычно изоготовляют из спиральных канатов одинарной свивки. Проволочки каната должны быть оцинкованы для защиты от коррозии. Запас прочности в канате должен быть не менее 3. Для регулирования длины и величины натяжения ванты должны быть снабжены винтовыми стяжками (тальрепа-ми).  [c.157]

Работоспособность оборудования (трубопроводы, сосуды, аппараты и др.) зависит от качества проектирования, изготовления и эксплуатации. Качество проектирования, в основном, зависит от метода расчета на прочность и долговечность, определяется совершенством оценки напряженного состояния металла, степенью обоснованности критериев наступления предельного состояния, запасов прочности и др. В области оценки напряженного состояния конструктивных элементов аппарата к настоящему времени достигнуты несомненные успехи. Достижения в области вычислительной техники позволяют решать практически любые задачи определения напряженного состояния элементов оборудования. Достаточно обоснованы критерии и коэффициенты запасов прочности. Тем не менее, существующие методы расчета на прочность и остаточного ресурса тр>ебуют существенного дополнения. Они должны базироваться на временных факторах (коррозия, цикличность нагружения, ползучесть и др.) повреждаемости и фактических данных о состоянии металла (физико-механические свойства, дефектность и др.).  [c.356]

Коррозионная усталость - процесс постепенного накопления повреждений, которые обусловлены одновременнык воздействием переменных нагрузок и коррозионно-активной срелы. приводящим к уменьшению долговечности и снижению запаса циклической прочности. Коррозионная усталость является частным случаем коррозии под напряжением.  [c.58]

Таким образом, предельная температура выражает максимально допустимую температуру мет1алла при условии, что глубина коррозии за известное время не превышает заданного значения. Предельную температуру металла обычно определяют, исходя из допустимой глубины коррозии Д5д=1 мм за 100 тыс. ч работы. Коэффициент запаса принимается ii)n=l,3. При определении нормативных значений предельных температур в [108] рекомендуется принимать температурный перепад между наружной и внутренней поверхностями труб ширмовых и конвективных пароперегревателей равным 10—12 К.  [c.112]

Для станций катодной защиты от коррозии изготовляют защитные установки номинальной выходной мощностью примерно от 10 Вт для цистерн (бензоколонок) и коротких трубопроводов до 20 кВт для крупных подводных стальных сооружений. Защитные установки для трубопроводов обычно имеют выходную мощность в пределах 100—600 Вт. Рекомендуется принимать номинальный ток защитной установки примерно вдвое большим, чем требуемый защитный ток по расчету, чтобы иметь достаточный запас на будущее расширение системы, в случае возможного снижения сопротивления изоляции, увеличения блуждающих токов и других изменений. Требуемое номинальное напряжение на выходе определяется по величине необходимого защитного тока и сопротивлению цепи анодный заземлитель—грунт — объект защиты, которое принимается по оценке или мод5ет быть измерено после окончательной установки анодных заземлителей. По напряжению на выходе тоже необходимо предусматривать достаточный запас. По номинальным значениям тока и напряжения на выходе может быть получено номинальная выходная мощность.  [c.219]


Вид, исполнение, коррозия материала и срок службы анодных зазем-лителей и анодов систем катодной защиты были рассмотрены в разделе 8. В разделе 9 были представлены сведения о защитных установках. На рис. 17.3, б показана принципиальная схема центрального анода с наложением тока от внешнего источника для одного из сооружений в прибрежном щельфе. Аноды систем катодной защиты портовых сооружений должны работать в принципе с возможно более низким анодным напряжением порядка всего нескольких вольт, чтобы обеспечить равномерное распределение защитного тока и снизить эксплуатационные расходы. Размеры анодов (анодных заземлителей) должны быть выбраны с запасом, поскольку это позволяет предотвратить неравномерное распределение защитного тока и чрезмерную защиту поблизости от анодов. Кроме того, возможный выход из строя отдельных анодов при этом будет иметь менее вредные последствия.  [c.341]

Внутренняя защита танков осуществляется при помощи протекторов. Защита с наложением тока от внешнего источника не допускается ввиду опасности возгорания при образовании искр или коротком замыкании. Объектами защиты являются балластные, грузовые (для перевозки нефти), топливные и водяные танки (см. также раздел 20). Разработаны предписания по проектированию системы защиты и выбору протекторов [3], иозволяющие также и при соорул ении судов отказаться от запасов на коррозию при расчете толщины стенки. В зависимости от системы защиты критериев танки могут классифицироваться следующим образом  [c.368]

Коррозия не только приводит к громадным потерям материальных средств, но и способствует истощению природных ресурсов. Этот аспект проблемы становится все более и более важным. Теперь уже всем ясно, что к земным запасам следует относиться очень бережно, поскольку их потери невозместимы, а замена синтетическими материалами требует непрерывно возрастающих расходов и энергетических затрат.  [c.4]

Рекомендации по легированию, которые приведены ниже, разработаны исходя из требования, что скорость коррозии сплава не должна превышать 0,1 мм/год, т.е. соответствовать 1 баллу коррозионной стойкости. Сплавы указанных составов предназначены для работы в кипящей кислоте эксплуатация сплавов при более низкой температуре обеспечивает дополнительный запас надежности. Выбор той или иной основы сплавов тугоплавких металлов и степени их легирования вследствие с оцественно различающейся стойкости этих металлов во многих случаях приобретает решающее значеш1е. Конкретную стоимость того или иного металла указать трудно, так как она непостоянна и зависит от многих обстоятельств технологического и конъюнктурного плана. В данном случае достаточно привести примерное соотношение стоимости тугоплавких металлов. Оно следующее Nb в 2 раза дешевле Та, W и Мо — в 10 раз, V — в 5 раз, Ti — в 100 раз. Однако необходимо учитьшать также и плотность тугоплавких металлов (см. табл. 1). Все указанные тугоплавкие металлы, кроме W, легче, чем Та. Весьма округленно плотность относительно тантала равна —4 для Ti, —3 для V, —2 для Nb, —1,5 для Мо, 1 для W. Следовательно, при изготовлении изделия (детали) не из тантала, а из титана его стоимость будет меньше в 400 раз, из ванадия — в 15 раз, из ниобия — в 4 раза, из молибдена — в 15 раз, из вольфрама - в 10 раз.  [c.81]

Труб d — 75 мм, толщина стенки h (0) — 5,5 мм. Избыточное давле- ние газа Р = 20ШПа. Коэффициент запаса прочности, принимаемый при расчете насосно-компрессорных труб на осевую нагрузку относительно предела текучести, по справочным данным, равен 1,5. Окружное напряжение в стенке трубы а = Pd/2h (0) = 136 МПа. Следовательно, если учесть коэффициент запаса для осевой нагрузки, то максимальным главным напряжением будет осевое, F = = 0,67 (а (т = 333 МПа при Стпр = = От), F = I. Для V = 7 см имеем а = 1,38 при 300 К-По графику (см. рис. 4) находим соответствующее значение То, и тогда Vo = h (0) Tolt = 0,037 мм в год, что можно считать рекомендуемой величиной при защите трубопроводов от коррозии.  [c.38]

Учет коррозионного износа стенок газопроводов, транспортирующих среды, содержащие сероводород, обычно производили путем увеличения толщины стенки на 3 мм для неосушенных сред и на 2 мм для осушенных по сравнению с номинальными толщинами для неагрессивных сред. Однако эти величины не являются обоснованными, так как базируются на понятии максимальная допустимая скорость коррозии в предположении постоянства этой величины во времени, что не соответствует реальным условиям эксплуатации. Действительно, несущая способность стенки трубопровода, подвергаемой воздействию общей коррозии (коррозионное растрескивание в присутствии сероводорода исключается соответствующим выбором состава и термообработки стали и определяется достижением предельного допускаемого значения напряжения, которое для газопромысловых трубопроводов в зависимости от кате гор ийности трубопровода составляет 0,3— 0,5ff ), определяется действующими напряжениями. Динамика изменения напряженного состояния в стенке трубопровода зависит от изменения как силовых нагрузок (давления), так и толщины стенки вследствие ее коррозионного износа. В свою очередь изменение механических напряжений в стенке вызывает изменение скорости коррозионного износа. Неучет реальной динамики этих процессов при назначении толщины стенки может привести либо к занижению запаса толщины на коррозионный износ, либо к неоправданному ее завышению и перерасходу металла.  [c.243]

Конструкции, имеющие плавные переходы плоскостей, легче сохранять в чистоте, в острых переходах всегда скапливается пыль, они труднодоступны для защиты от коррозии с помощью гальванической обработки или окраски. В целях экономии материалов необходимо применять кинематические цени с минимальным количеством деталей и уменьшать габаритные размеры корпусных деталей, применять детали с нормально необходимым запасом прочности и жесткости, заменять в отдельных случаях монолитные конструкции сборными, использовать более легкие материалы — полимеры и древоиластики вместо черных и в особенности цветных металлов, заменять конструкционные углеродистые стали малолегированными и малолегированные стали высоколегированными и специальными в деталях, работающих с большими нагрузками, и в трущихся парах широко применять сварные и штамио-сварные детали и сборочные единицы вместо литых и кованых, широко внедрять в производство экономичные профили проката.  [c.123]

Энергия волн. Наличие огромных запасов энергии в волнах океана ( консервированной ветровой энергии ) очевидно. Великобритания в 70-х годах являлась. мировым лидером в исследованиях по использованию этого вида энергии. Ресурсная база энергии волн огромна, но производство и подготовленные запасы равны нулю, поскольку пока не существует экономичной схемы ее эксплуатации при современных экономических и технологических условиях. В исследовательской работе в Великобритании можно выделить четыре основные системы, три из которых названы по их авторам. Утки Солтера и разрезные плоты Кокерелла используют смещение одних компонентов по отношению к другим (оси или другого плота). Соответствующие модели в одну десятую от натуральной величины испытывались в 1978 г. Выпрямитель Рассела использует постоянный напор воды, возникающий между верхним резервуаром, заполняемым на гребне волны, и нижним резервуаром, расположенным в провалах между волнами. Над этой системой работала станция гидравлических исследований. В Национальной инженерной лаборатории разработан метод качающегося водного столба, где столб воды сжимает воздух, который приводит в действие турбину. В нескольких университетах проводились эксперименты с использованием различных идей, таких, как система воздушных мешков, изобретенная М. Френчем, где также сжатый воздух приводит в действие турбину. Другие ненаправленные конструкции, такие, как воздушные поплавки и полупогруженные трубы, в 1979 г. все еще находились в начальной стадии разработки. С теоретической точки зрения, могут быть сооружены механизмы, которые будут превращать, по крайней мере, 25 % приходящей энергии волн в полезную электрическую энергию [68]. Обсуждение вопросов использования энергии волн в начале 1979 г. [95] показало, что к этому времени было достигнуто гораздо лучшее понимание соответствующих проблем, чем в период энтузиазма в начале 70-х годов. Среди сложных проблем преобразования энергии морских волн можно упомянуть непостоянство и неправильности в поведении волн, дороговизну устройств, трудности в швартовке и постановке на якорь, ремонте и замене отдельных конструкций, коррозию, усталость материала, обрастание днищ, экологический ущерб морским и прибрежным экосистемам, помехи судоходству, а также трудности передачи энергии потребителям в редконаселенных районах, таких, как западные острова Шотландии. Следует отметить, что в разработке всех упомянутых систем принимали участие различные специалисты, строители, механики, моряки, электрики, геологи, так же, как представители фундаментальной науки из области механики жидких тел. Интенсивная работа в этом направлении, без сомнения, будет продолжаться в 80-е годы, но.  [c.221]


Если при смазке обыкновенным минеральным маслом запас надёжности против заедания получается меньше единицы (стр. 269). следует применять сильную противозадирную смазку (табл. 19. стр. 266). Из смазок такого типа наиболее распространены полученные путём растворения 3—15 /о (по весу) свинцового мыла в минеральном масле, содержащем 1—ЗО/д серы (растворённой полностью или частично). Рекомендуется применять серосодержащие смазки, приготовленные тем же способом, каким приготовляются сульфофре-золы. Чем более корродирующим действием обладает такая смазка (о чём судят по коррозии медной пластинки в смазке при температуре 100 С после 3 час. выдержки), тем лучше её противозадирные свойства. Это обстоятельство мешает применению сильных  [c.299]

Запасы прочности при расчёте валов и осей должны быть повышены (допускаемые напряжения снижены) в случаях 1) если действующие нагрузки и возникающие в отдельных частях вала напряжения не могут быть точно рассчитаны [например, в случаях а) статически неопределимого вала, опоры которого имеют осадки, не поддающиеся расчёту б) наличия вибраций,не поддающихся расчёту в) такой формы вала, при которой неизвестны эффективные коэфициенты концентрации напряжений ит.д.] 2)если вал (или ось) изготовляется из неоднородного материала, механические качества которого плохо известны 3) если вал (или ось), работающий в условиях высоких температур, может быть подвергнут действию коррозии 4) если вал (или ось) имеет большие абсолютные размеры, при которых сильнее сказываются технологические факторы и внутренние напряжения 5) если вал (или ось) имеет ответственное значение и разрушение его может привести к тяжёлым последствиям (например, оси железнодопожного подвижного состава).  [c.509]

Величина с при этом включает в себя а) минусовый допуск по толщине стенки при изготовлении труб б) утонение стенок в местах гибов труб (при диаметрах выше 108 мм оно учитывается особо) и в) запас на коррозию при Spaf,, 6 мм с принимается равным 1 при мм величина с определяется из  [c.76]

Противозадирные и противоизносиые смазки рекомендуется применять в передачах с малым запасом надежности tipoTviB заедания активные составляющие масел уменьшают сопротивляемость зубьев и подшипников качения выкрашиванию. В передачах с подшипниками скольжения и общей системой смазки допускаются только такие присадки, которые не вызывают коррозии или отслаивания рабочего слоя вкладыша (физикохимические свойства масел и присадок см. т. 2, гл. VII, и [23]).  [c.403]


Смотреть страницы где упоминается термин Коррозия запаса : [c.152]    [c.165]    [c.331]    [c.135]    [c.144]    [c.172]    [c.37]    [c.110]    [c.223]    [c.1106]    [c.1107]    [c.64]   
Главные циркуляционные насосы АЭС (1984) -- [ c.231 ]



ПОИСК



Запас



© 2025 Mash-xxl.info Реклама на сайте