Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конвертерный способ производства стали

При конвертерном способе производства стали выделение газов из конвертера по количеству и химическому составу в течение плавки резко меняется. Начальный период продувки конвертеров характеризуется низким содержанием СО в конвертерных газах (30—60%). По мере окисления примесей скорость выгорания углерода увеличивается и после окисления кремния (и большей части Мп) наступает период интенсивного обезуглероживания. Скорость обезуглероживания является важной характеристикой газовыделения. По ней рассчитывается пропускная способность газоотводящего тракта конвертера.  [c.91]


Особыми случаями использования теп-л а печей можно считать следующие. В последнее время расширяется применение конвертерного способа производства стали с кислородной продувкой сверху. Конвертерные газы состоят из 80—90% СО, содержат до 170 г/м пыли и имеют температуру 1500—1 700° С, что ставит вопрос о полноценном использовании их физического и химического тепла. Применение паровых котлов встречает затруднения, так как продувка с большим выделением газов составляет около половины времени рабочего цикла. При стремлении возможно полнее использовать тепло конвертерных газов приходится устанавливать большие котлы, степень использования мощности  [c.255]

В последние годы наблюдается широкое развитие кислородно-конвертерного способа производства стали. Это обусловлено значительно более высокой производительностью этого способа по сравнению с мартеновским, меньшими расходами по переделу, более низкими удельными капитальными вложениями. Удельные капитальные затраты на выплавку тонны стали в конвертерных цехах колеблются в пределах 4,0—6,5 руб. по сравнению с 7,0—8,5 руб. в мартеновских [239], производительность труда в 1,5 раза выше [240], а эксплуатационные расходы на 28,0—44,5% ниже [241]. Возможность ритмичной подачи слитков при конвертерном переделе (небольшие промежутки между выпусками плавок) благо-  [c.193]

Преимущества конвертерных способов производства стали  [c.48]

При конвертерных способах производства стали необходимо было применение дефицитного чугуна определенного состава и невозможно было использование накопленных запасов стального лома.  [c.49]

Конвертерный способ производства стали  [c.50]

Конвертерный способ производства стали заключается в продувке жидкого чугуна воздухом (кислородом) в печи, называемой конвертером. Конвертер, работающий на воздушном дутье (рис. 13, а), представляет собой грушевидный сосуд 1 из листовой  [c.50]

Кислородно-конвертерный способ производства стали  [c.55]

Преимущества конвертерного способа производства стали высокая производительность, отсутствие топлива, простота устройства агрегата, небольшие капитальные затраты и низкая стоимость стали.  [c.23]

Конвертерный способ производства стали получил свое название от применяемого при производстве стали оборудования — конвертеров , отличающихся тем, что процесс производства в них стали осуществляется продувкой жидкого чугуна атмосферным воздухом или воздухом, обогащенным кислородом.  [c.33]


По сравнению с разработанным несколько позже мартеновским способом производства стали конвертерный процесс отличался значительно более высокой производительностью. Однако он имел и существенные недостатки. При конвертерном процессе нельзя было в значительных количествах перерабатывать твердый скрап, т. е. вторичный металл,— сырье в виде отходов производства и стального лома, которое во все большем количестве накапливалось в хозяйстве развитых стран. Кроме того, интенсивная продувка жидкого металла в конвертере сжатым воздухом вызывала повышенную концентрацию азота в металле. К концу процесса бессемерования в стали обычно содержалось 0,012—0,015% азота. Это значительно превышало содержание азота в мартеновской стали. То же самое можно сказать и о концентрации кислорода. Конвертерная сталь содержала его большее количество, чем мартеновская. Увеличенное содержание в металле азота, кислорода, так же как фосфора и серы, ухудшало его пластические свойства, повышало хрупкость металла в процессе его последующей обработки давлением и при эксплуатации изделий из такого металла [3, с. 153, 154]. В результате этого уже в последнее десятилетие XIX в. более интенсивно развивался мартеновский способ производства стали, а в дальнейшем также электрометаллургические процессы. Конвертерный способ выплавки стали надолго уступил им первенство.  [c.119]

Развитие конвертерных способов получения стали в 60-е годы XIX в. удовлетворяло растущие потребности машиностроения в количестве выплавляемого металла. Однако производство машин и особенно инструментов требовало металла все более высокого качества, а этого конвертерные процессы в то время обеспечить не могли.  [c.120]

По способу производства стали подразделяются на конвертерные, мартеновские и электростали. По химическому составу стали делятся на углеродистые и легированные (специальные). В зависимости от назначения стали делятся на конструкционные, инструментальные и стали с особыми свойствами.  [c.6]

По мере развития кислородно-конвертерного способа производства и повышения удельного веса конвертерной стали в общей выплавке возрастает роль этого способа получения стали и в производстве низколегированной стали. Уже накоплен значительный отечественный опыт по производству и исследованию низколегированной кислородно-конвертерной стали большого числа марок. Количество неметаллических включений в стали, их состав, форма, величина и характер распределения в значительной степени определяют свойства стали [149]. Следовательно, процесс выплавки стали должен быть организован таким образом, чтобы обеспечить получение металла с наименьшим количеством неметаллических включений. Для этого должны быть созданы условия, обеспечивающие получение хорошо прокипевшего металла и с минимальным содержанием газов и вредных примесей (сера, фосфор).  [c.154]

По способу производства сталь делится на конвертерную (бессемеровскую и томасовскую), мартеновскую, электросталь и тигельную сталь. В настоящее время от всей выплавляемой стали до 85% выплавляется в мартеновских печах и до 10% в электропечах. Развивается конвертерный способ с кислородным дутьем, применяя который можно получать сталь высокого качества. Но пока наилучшими являются электросталь и тигельная сталь. Однако тигельный способ получения стали в настоящее время применяется редко.  [c.28]

При описании технологических процессов принимались во внимание новейшие достижения металлургической науки, повышение роли перспективных видов металлургического производства кислородно-конвертерного способа получения стали, непрерывной разливки стали и др.  [c.3]

Основными способами производства стали в СССР являются мартеновский, конвертерный и электросталеплавильный.  [c.181]

Несмотря на несомненные достоинства бессемеровского и томасовского способов производства стали (большая производительность, меньшие по сравнению с мартеновским способом капитальные затраты на строительство цехов), их развитие ограничивает пониженное качество выплавляемой в конвертерах стали. В настоящее время разрабатываются и внедряются новые усовершенствованные способы получения стали в конвертерах, из которых наиболее перспективным, бурно развивающимся в нашей стране и за рубежом является кислородно-конвертерный процесс с продувкой чугуна технически чистым кислородом сверху.  [c.186]


Исходными металлическими материалами для получения стали служат передельный чугун, стальной лом и ферросплавы. Чугун по сравнению со сталью содержит большее количество углерода и примесей. Поэтому основная задача передела чугуна в сталь состоит в удалении избытка углерода и примесей с помош,ью окислительных процессов, протекающих в сталеплавильных агрегатах. Основными способами производства стали являются кислородно-конвертерный, мартеновский и электродуговой.  [c.21]

Во всех способах производства стали — мартеновском, конвертерном, электросталеплавильном — по ходу плавки по мере выгорания примесей (кремния, марганца и углерода) имеет место постепенное повышение содержания кислорода. В конце окислительного периода плавки содержание растворенного кислорода в жидком металле определяется в основном концентрацией углерода, причем максимальных значений кислород достигает при низком содержании углерода. Задачей раскисления является снижение концентрации растворенного кислорода и возможно полное удаление из металла продуктов раскисления. Оставшийся в металле кислород в неактивной форме в гораздо меньшей степени сказывается на ухудшении свойств готовой стали.  [c.347]

По способу производства стали разделяют на мартеновские, конвертерные, бессемеровские и электростали. Способ производства оказывает влияние на содержание примесей. Для угле-  [c.34]

Способы производства стали (мартеновский, конвертерный) влияют на ее коррозионную стойкость вследствие различия в химическом составе, обусловленном особенностями этих способов и назначением получаемой стали.  [c.260]

Сталь — это сплав железа с углеродом, содержание которого не превышает 2,14 %. Кроме того, в ней содержатся постоянные примеси (Мп, Si, S, Р) и в ряде случаев легирующие элементы (Ni, Сг, V, Мо, W и др.). Сырьем для производства стали является передельный чугун, выплавляемый в доменных печах, лом и ферросплавы (см. рис. 10,1). Если сравнить содержание основных примесей в чугуне и стали, можно сделать вывод, что сталь отличается от чугуна только их количеством в чугуне содержание углерода, кремния, марганца, серы и фосфора выше, чем в стали. Поэтому основная задача передела чугуна в сталь состоит в удалении части этих примесей с помощью окислительных процессов. Механизм этого окисления не зависит от типа сталеплавильной печи. Наиболее часто для этой цели используют мартеновский, кислородно-конвертерный и электродуговой способы.  [c.176]

Конвертерное производство характеризуется высокой производительностью, не требует топлива, так как разогрев идет за счет экзотермических реакций горения кремния, марганца и углерода и позволяет перерабатывать лом и получать легированные стали. Но оно привязано к доменному цеху, не обеспечивает стабильного состава стали от плавки к плавке и отличается от других способов выплавки стали высокими потерями метала на угар.  [c.179]

Плавка в дуговых и индукционных электрических печах. Такая плавка является важнейшим способом получения стали высокого качества для производства ответственных деталей машин и инструментов. Она имеет ряд преимуществ перед мартеновской и кислородно-конвертерной. Электропечь быстро нагревается до заданной  [c.88]

По способу производства различают стали, выплавленные в электропечах, мартеновских печах и кислородно-конвертерным способом.  [c.277]

Электросталеплавильный процесс — более совершенный способ выплавки стали, имеющий ряд преимуществ по сравнению с мартеновскими и конвертерными способами. В электрических печах легко регулировать тепловой режим, изменяя параметры электрического тока. Температура при плавке достигает 2000° С, что позволяет использовать высокоосновные шлаки для наиболее полного удаления из металла серы и фосфора. Отсутствие окислительной атмосферы способствует получению хорошо раскисленной стали. В электрических печах выплавляют наиболее высококачественные углеродистые и легированные конструкционные, нержавеющие, жаропрочные и другие стали и сплавы. В дореволюционной России производство электростали было очень небольшим. В настоящее время ее выплавка составляет около 12 млк. т., т. е. примерно 10% всего производства стали. В текущем пятилетии ее производство будет увеличено в 1,6 раза.  [c.53]

Выплавка в дуговых электрических печах — главный способ производства высококачественных конструкционных, нержавеющих и других сталей и сплавов. Более высокое по сравнению с мартеновской и конвертерной качество электростали объясняется ее более высокой чистотой по сере и фосфору и неметаллическим включениям, хорошей раскисленностью. Сталь еще более высокого качества (в очень ограниченных количествах) выплавляют в индукционных печах, методом вакуумного переплава и др. Одна из причин состоит в том, что сталь, выплавляемая в дуговых печах, характеризуется несколько большим содержанием азота. В зонах действия электрических дуг (4000—6000° С) образуется атомарный азот, хорошо растворимый в жидкой стали и не полностью удаляемый при дегазации. Вследствие науглероживающего действия электродов в дуговых печах не удается выплавлять сталь и сплавы с низким содержанием углерода.  [c.59]

Непрерывная разливка стали — метод, который начал развиваться сравнительно недавно. Начало проектирования и строительство установок непрерывной разливки стали относится к 1951—1952 гг. Она сразу зарекомендовала себя как прогрессивный способ, существенно упрощающий весь процесс производства стали, улучшающий качество стали и увеличивающий выход годного металла. В первой половине 1966 г. был введен в действие кислородно-конвертерный цех Ново-Липецкого металлургического завода, в котором всю сталь, выплавляемую в конвертерах, разливают на установках непрерывной разливки в плоские заготовки, которые направляют непосредственно в листопрокатные цехи. Это самый крупный в мире цех с непрерывной разливкой стали.  [c.331]


По способу производства различают электросталь, мартеновскую, конвертерную (бессемеровскую и томасовскую) и тигельную сталь.  [c.327]

За последние полтора столетия в производстве стали произошло много изменений. Отошли в прошлое такие способы, как тигельная плавка, пудлинговый процесс и многие другие, которые хотя и обеспечивали получение качественной стали, но были трудоемки, малопроизводительны и были вытеснены конвертерными и мартеновскими способами получения стали. В текущем столетии начали широко применять электрометаллургические способы, позволяющие выпускать наиболее сложные и высоколегированные стали.  [c.39]

Конвертерное производство стали постоянно совершенствовалось. Уральские мастера и инженеры разработали, напри.мер, оригинальный способ конвертерной переработки чугунов, содержащих пониженное содержание кремния и 1,5 % марганца. Этот способ нашел последователей на других русских и западноевропейских заводах и получил название русского бессемерования.  [c.40]

За последние полтора столетия в производстве стали произошло много изменений. Отошли в прошлое такие способы, как тигельная плавка, пудлинговый процесс и многие другие, которые хотя и обеспечивали получение качественной стали, но были трудоемки, малопроизводительны. Их вытеснили конвертерные и мартеновские способы получения стали. В текущем столетни начали широко применять электрометаллургические способы, позволяющие выпускать наиболее высоколегированные стали. Основным способом выплавки стали в 80-х годах двадцатого века является конвертерный, которым выплавляют более 55 % стали постепенно сокращается  [c.55]

Приведены характеристики шихтовых и огнеупорных материа лов, применяемых в конвертерном производстве. Расемотрены уст ройство и конструкции конвертеров, подготовка конвертеров к ра боте и обслуживание их в процессе эксплуатации. Основное внима ние уделено кислородно-конвертерному способу производства стали Рассмотрены технико-экономические показатели работы конвертер ных цехов, нормы выработки и оплаты труда, вопросы техники без опасности и производственной санитарии.  [c.15]

Общие сведения. Конвертерный способ производства стали отличается высокой производительностью, экономичностью, широкими возможностями по автоматизащ1и технологического процесса и совместимостью с машинами непрерывного литья заготовок (МНЛЗ), скоротечностью и частыми выпусками плавок, что предъявляет особые требования к планировочным решениям. Непременным условием является полная независимость работы конвертеров друг относительно друга - проведение любой операции на одном конвертере не должно приводить к задержкам на других. Полная независимость грузопотоков хотя и требует дополнительного числа машин, обслуживающих конвертеры, но позволяет исключить сбои в эксплуатации цеха в целом и таким образом, обеспечить максимально возможную производительность.  [c.83]

Машины подачи дутья сверху. За время развития конвертерного способа производства стали конструкция машин для подачи кислорода сверху претерпела значительные изменения. Однако общим требованием к машинам является наличие двух независимърс фурм. При выходе из строя одной из фурм ее можно заменить на другую без значительной потери времени, что очень важно в условиях быстротечного кислородно-конвертерного процесса, так как сокращает длительность вспомогательных операхщй.  [c.97]

Рост производства стали будет происходить за счет преимущественного развития конвертерного и электроплавильного способов производства стали при постепенном снижении выплавки стали в мартеновских печах, что расширит диапазон марочного сортамента и повысит качество стали. Доля электростали в общем объеме производства стали составит в 1985 г. 14,8% по сравнению с 10,7% в 1980 г., при этом удельный расход электроэнергии на выплавку 1 т стали возрастет соответственно с 90,9 до 112,2 кВт-ч/т. Большое распространение получат установки непрерывной разливки стали (УНРС). Предусматривается довести в 1985 г. выплавку стали с применением УНРС до 22,8% всей выплавки стали вместо 11,8% в 1980 г. На каждую тонну литой заготовки, разлитой на УНРС, расходуется дополнительно 25—28 кВт-ч электроэнергии. Однако при этом снижается расходный коэффициент металла для получения заготовки с 1,2 до 1,05 и достигается экономия топлива на нагрев слитков в объеме 36—45 кг/т (в условном топливе) и экономия электроэнергии на прокат слитков на обжимных станах —18— 20 кВт-ч/т. С целью повышения качества металла предусматривается широкое развитие обработки стали синтетическими шлаками, инертными газами, применение вакуумирования, электрошлакового и вакуумно-дугового переплава, микролегирования и других прогрессивных методов. При этом удельный расход электроэнергии повышается в 2—3 раза по сравнению со средним удельным расходом электроэнергии на выплавку электростали.  [c.53]

Около двадцати лет назад появился новый прогресс рный способ выплавки стали — кислородно-конвертерный передел. Этот способ обладает существенными технико-экономическими преимуществами по сравнению с перечисленными способами выплавки стали и быстро получил очень широкое применение, особенно за последнее пятилетие. В табл. 2 приведены данные о современных способах производства стали в пяти ведущих капиталистических странах, выплавляющих около 80% всей стали. Из данных, приведенных в табл. 2, видно, что в общей выплавке стали в этих странах с 1965 по 1970 г. доля мартеновской стали снизилась с 55 до 25%, а доля кислородноконвертерной стали возросла с 25 до 55%.  [c.38]

Имеется большое разнообразие способов и схем предварительной обработки чугуна в ковшах путем продувки кислородом. Наибольшее распространение имеет продувка чугуна пе->ед заливкой в миксер и во время наполнения ковша из миксера. Лредварительная обработка жидкого чугуна кислородом на пути от доменной печи к сталеплавильным агрегатам позволяет получать такой -полупродукт, дальнейшая переработка которого в сталь будет сопровождаться резким сокращением времени передела, значительным уменьшением расхода топлива и энергии и улучшением качества металла. Применение кислорода в конвертере обеспечивает такой избыток тепла, который позволит значительно увеличить степень использования скрапа. Таким образом, кислород сближает два таких, казалось бы, различных способа производства стали, как мартеновский и конвертерный.  [c.27]

В черной металлургии Советского Союза применяются три основных способа производства стали конвертерный (бессемеровский и томасов-ский), мартеновский и электроилавка.  [c.9]

В СССР классификация стали осуществляется в соответствии с существующими государственными стандартами и техническими условиями. Сталь классифицируют по способу производства, назначению, качеству и химическому составу. По способу производства различают конвертерную (различные варианты), мартеновскую стали, электросталь. Мартеновская сталь и электросталь могут быть основными и кислыми. По 41азначению различают следующие группы конструкционную, инструментальную и специальные (с особыми физическими и химическими свойствами). Конструкционные стали применяют для изготовления строительных конструкций, деталей машин и механизмов, судовых и вагонных корпусов, паровых котлов и других изделий. Конструкционные стали могут быть как углеродистыми, так и легированными. По названию некоторых конструкционных сталей можно судить об их назначении (котельная, судостроительная, клапанная, рессорно-пружинная, орудийная, снарядная, броневая, рельсовая и т. д.).  [c.98]


Процесс занимает главенствующую роль среди существующих способов массового производства стали. В настоящее время прирост производства стали во всех странах, в том числе и в СССР, происходит главным образом в результате ввода в строй новых кислородно-конвертерных цехов. Такой успех кислородио-конвертериого процесса объясняется возможностью переработки чугунов практически любого состава, использованием скрапа от 10 до 30 %, возможностью выплавки широкого сортамента сталей, включая легированные, высокой производительностью, малыми затратами на строительство, большой гибкостью и высоким качеством продукции.  [c.118]

В работе [79, с. 176—178] показано, что расход алюминия в виде ферроалюминия при раскислении стали уменьшен в 2,5 раза. При использовании сплава ФЛМнС уменьшился расход углеродистого ферромарганца в два раза, а расход алюминия и ферросилиция — на 20%. Снижение затрат при использовании комплексных сплавов сопровождается улучшением качества металла. По данным А. В. Маринина при раскислении стали ферроалюминием ( 60 % А1) увеличивается ударная вязкость, особенно при отрицательных температурах, возрастает выход толстого листа высшего качества. Э. Н. Михайлов показал, что применение сплава Мп—AI (51 % Мп, 12,4% AI и 2,7% Si, 2% Си ост. Fe) для раскисления конструкционной кислородно-конвертерной стали в ковше более эффективно, чем раздельное введение в металл марганца и алюминия. При раскислении сплавом Мп—А1 улучшается макроструктура металла, уменьшается его загрязненность неметаллическими включениями и повышаются механические свойства. Выбор сырья и способа производства алюминосодержащих сплавов должен в каждом отдельном случае определяться экономическим расчетом для конкретных условий.  [c.106]

По ГОСТ 9543—60 углеродистую сталь поставляют обыкновенного качества, выплавленную в конвертерах с продувкой кислородом. Конвертерная сталь изготавливается спокойной, полу-спокойной и кипящей. Требование к этой стали по механическим свойствам и химическому составу соответствуют требованиям ГОСТ 360—60. Конвертерная сталь по группе А маркируется так же, как и сталь по группе А ГОСТ 380—60. Способ производства указывают в сертификате. Конвертерная сталь группы Б маркируют КСт. О, КСт. 1кп и т. д. К обозначению марки полуспокой-ной стали добавляют индекс пс . Конвертерную сталь. подгруппы В маркируют ВКСт. 2кп, ВКСт. 3 и т. д. Конвертерная сталь по своему химическому составу и свойствам приближается к мартеновской.  [c.105]

При первом способе используется двухзначный номер, для обозначения группы стали. При этом первая и вторая цифры двухзначного номера могут изменяться от О до 9. Первая цифра характеризует способ производства. Например О — способ производства не играет роли или не определен, 1 — томасовская кипящая сталь, 5 — мартеновская кипящая сталь, 7 — кипящая кислородно-конвертерная сталь, 9 — сталь, полученная электровыплавкой. Вторая цифра характеризует вид обработки. Например О — без обработки после прокатки, 1 — нормализация, 5 — улучшение, 7 — холодное пластическое деформирование, 9 — специальная обработка. В соответствии с классификацией существует 86 групп сталей, начиная с марок, обозначенных 00 01 02 и т. д. Существуют особые виды обычных и качественных сталей, в обозначении марок которых вначале идет цифра 9 90 91 92 ... 99. Стали углеродистые обыкновенного качества попадают в группы  [c.81]

Изобретение процесса получения стали и железа из чугуна путем продувки последнего в расплавленном состоянии воздухом относится к числу замечательных достижений технической мысли. Изобретатель процесса англичанин Геири Бессемер в 1855 г. взял патент на передел чугуна в сталь путем продувки его паром или воздухом. Тогда же была высказана мысль об использовании кислорода для продувки металла в конвертере. Однако эту идею не могли осуществить в производственных масштабах в течение 80 лет. Только в последнее время, после отработки способов получения кислорода в достаточно больших количествах и установления вредного влияния азота на качество обычной бессемеровской стали, начались поиски способов применения кислорода при выплавке стали. Расширение производства кислорода и снижение его стоимости стимулировали исследования в области орименеиия кислорода в конвертерах. Вследствие разгара фурм и низкой стойкости днищ при донной продувке чистым кислородом во многих странах начали применять вдувание кислорода в конвертер сверху, через вертикальную водоохлаждаемую фурму. При этом кислород обычно подают под давлением 6—10 атм, которое необходимо для гароникнове-ния кислорода через шлак в металл. Производство стали в конвертерах продувкой кислородом сверху было освоено в Ав< гр1 и, где чугун, выплавленный из штирийских руд, содержит около 0,20 Р и переработка его в основных конвертерах с донной продувкой затруднена. Работа с применением кислорода в конвертерных процессах имеет ряд особенностей [28]. Металл нагревается до высокой температуры, которую регулируют добавками холодного скрапа, иногда от 20 до 35% по весу (вместо 8% в конвертерах с воздушным дутьем), или руды. При этом фосфор выгорает одновременно с углеродом сера выгорает от одной трети до половины. Полезное использование кислорода составляет 90—95% температура металла, а следовательно, и количество добавляемого скрапа зависят от содержания кремния в чугуне.  [c.53]


Смотреть страницы где упоминается термин Конвертерный способ производства стали : [c.34]   
Смотреть главы в:

Технология металлов и других конструкционных материалов  -> Конвертерный способ производства стали



ПОИСК



Конвертерные способы

Способы производства стали



© 2025 Mash-xxl.info Реклама на сайте